Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\frac{1}{x\left(x+1\right)}\)= \(\frac{1}{x}-\frac{1}{x+1}\)
Mà \(\frac{1}{x\left(x+1\right)}=\frac{1}{x}+\frac{1}{2017}\)
=> \(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x}+\frac{1}{2017}\)
=> \(-\frac{1}{x+1}\)= \(\frac{1}{x}+\frac{1}{2017}-\frac{1}{x}\)
=> \(-\frac{1}{x+1}=\frac{1}{2017}\)
=> \(-1\cdot2017=\left(x+1\right)\cdot1\)
=> \(-2017=x+1\)
=> \(x=-2017-1\)
=> \(x=-2018\)
Vậy \(x=-2018\)
\(f\left(x\right)=x^2-2x+2017\)
\(\Leftrightarrow f\left(x\right)=x^2-x-x+2017\)
\(\Leftrightarrow f\left(x\right)=\left(x^2-x\right)-\left(x-1\right)+2016\)
\(\Leftrightarrow x\left(x-1\right)-\left(x-1\right)+2016\)
\(\Leftrightarrow\left(x-1\right)^2+2016\)
Với mọi x ta có :
\(\left(x-1\right)^2\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+2016\ge2016\)
\(\Leftrightarrow f\left(x\right)\ge0\)
Dấu "=" xảy ra khi :
\(\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy ..
ta co : f(x)= x2-2x+2017=x2-2x+1+2016=(x-1)2+2016\(\ge2016\)
dau = xay ra khix=1
Vay ....
M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017
M = (x3 + x2y - 2x2) - (xy + y2 - 2y) + (x + y - 2) + 2019
M = x2. (x + y - 2) - y(x + y - 2) + (x + y - 2) + 2019 = 2019
\(M = x^3 + x^2y - 2x^2 - xy - y^2 + 3y + x + 2017.\)
\(M=(x^3+x^2y-2x^2)-(xy-y^2+2y)+(x+y-2)+2019\)
\(M=x^2.(x+y-2)-y.(x-y+2)+(x+y-2)+2019\)
\(M=x^2.0-y.0+0+2019\)
\(M=0-0+0+2019\)
\(M=2019\)
24 - 16(x - 1/2) = 23
=> 16(x - 1/2) = 24 - 23
=> 16(x - 1/2) = 1
=> x - 1/2 = 1/16
=> x = 1/16 + 1/2
=> x = 9/16
\(24-16(x-\frac{1}{2})=23\)
\(16(x-\frac{1}{2})=24-23\)
\(16(x-\frac{1}{2})=1\)
\(x-\frac{1}{2}=\frac{1}{16}\)
\(x=\frac{1}{16}+\frac{1}{2}\)
\(x=\frac{9}{16}\)
Vậy số thực x cần tìm là \(\frac{9}{16}\)
Chúc bạn hok tốt ~
Ta có:\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+x\right)}{x+y+z}=2\)(theo tính chất của DTSBN)
Suy ra:\(\dfrac{1}{x+y+z}=2\)=>x+y+z=\(\dfrac{1}{2}\)
=>y+z=\(\dfrac{1}{2}\)-x
Tương tự, ta có được:
x+z=\(\dfrac{1}{2}-y\)
x+y=\(\dfrac{1}{2}-z\)
Thay các kết quả vừa tìm được, ta có:
\(\dfrac{0,5-x+1}{x}=\dfrac{0,5-y+2}{y}\dfrac{0,5-z-3}{z}=2\)=>\(\dfrac{1,5-x}{x}=\dfrac{2,5-y}{y}=\dfrac{-2,5-z}{z}=2\)
=>x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)
Thay x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)vào biểu thức A, ta có:
A=2018.\(\dfrac{1}{2}\)+\(\left(\dfrac{5}{6}\right)^{2017}\)+\(\left(\dfrac{-5}{6}\right)^{2017}\)
=>A=1009+\(\left[\left(\dfrac{5}{6}\right)^{2017}+\left(\dfrac{-5}{6}\right)^{2017}\right]\)
=>A=1009+0
=>A=1009
Vậy giá trị của biểu thức A là 1009
Tính giá trị của đa thức sau biết x=2018
N=x^6-2017x^5-2017x^4-2017x^3-2017x^2-2017x-2017
Help me :(((
Ta có : x - 1 = 2018 - 1 = 2017
N = x6 - 2017x5 - 2017x4 - 2017x3 - 2017x2 - 2017x - 2017
N = x6 - ( x - 1 ).x5 - ( x - 1 ).x4 - ( x - 1 ).x3 - ( x - 1 ).x2 - ( x - 1 ).x - ( x - 1 )
N = x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x + 1
N = 1
Bài giải
b, \(x-5+\left|x-3\right|=4\)
\(\left|x-3\right|=4-x+5\)
\(\Rightarrow\orbr{\begin{cases}x-3=-4+x-5\\x-3=4-x+5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x-x=-4-5+3\\x+x=4+5+3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x\ne-6\text{ ( loại ) }\\2x=12\end{cases}}\)\(\Rightarrow\text{ }x=6\)
c, \(\sqrt{\left(x+7\right)^2}+\left(x^2-49\right)^{2012}=0\)
\(\left(x+7\right)+\left(x^2-49\right)^{2012}=0\)
\(\Rightarrow\hept{\begin{cases}x+7=0\\\left(x^2-49\right)^{2012}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2-49=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2=49\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x=\pm7\end{cases}}\)
\(\)\(\Rightarrow\text{ }x=-7\)
d, \(2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}\le0\)
\(\text{Vì }\hept{\begin{cases}2\left|3-x\right|^{2017}\ge0\\\left(y-x+1\right)^{2016}\ge0\end{cases}}\) \(\Rightarrow\text{ Chỉ xảy ra trường hợp }2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}=0\)
\(\Rightarrow\hept{\begin{cases}2\left|3-x\right|^{2017}=0\\\left(y-x+1\right)^{2016}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left|3-x\right|^{2017}=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3-x=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y-3+1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\y-2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)
\(A=\left|x-1\right|+\left|x-2017\right|\)
\(\left|x-1\right|\ge0\) , \(\left|x-2017\right|\ge0\)
Để A đạt giá trị nhỏ nhất thì \(\left[{}\begin{matrix}\left|x-1\right|=0\\\left|x-2017\right|=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2017\end{matrix}\right.\)
What Help?