\(\frac{x+2}{2017}+\frac{x+3}{2016}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

3. Tìm x biết: |15-|4.x||=2019

\(\Rightarrow\orbr{\begin{cases}15-\left|4x\right|=2019\\15-\left|4x\right|=-2019\end{cases}\Rightarrow\orbr{\begin{cases}\left|4x\right|=-2004\\\left|4x\right|=2034\end{cases}}}\)

vì \(4x\ge0\)\(\Rightarrow\)|4x|=2043\(\Rightarrow4x=2034\Rightarrow x=508,5\)

KL: x=508,5

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
 Bài 1 :1, Tính giá trị biểu thức : a, A =\(\frac{\left(1+2+3+...+2019\right)\cdot\left(12\cdot3,4-6,8\cdot6\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}\)b, B =\(\frac{4}{3\cdot5}-\frac{6}{5\cdot7}+\frac{8}{7\cdot9}-\frac{10}{9\cdot11}+\frac{12}{11\cdot13}-...+\frac{100}{99\cdot101}\)  2, Cho : A =  \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}\)               B = \(\frac{1}{2017}+\frac{2}{2016}+\frac{3}{2018}+...+\frac{2016}{2}+\frac{2017}{1}\)   ...
Đọc tiếp

 Bài 1 :

1, Tính giá trị biểu thức :

 a, A =\(\frac{\left(1+2+3+...+2019\right)\cdot\left(12\cdot3,4-6,8\cdot6\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}\)

b, B =\(\frac{4}{3\cdot5}-\frac{6}{5\cdot7}+\frac{8}{7\cdot9}-\frac{10}{9\cdot11}+\frac{12}{11\cdot13}-...+\frac{100}{99\cdot101}\) 

 2, Cho : A =  \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}\)

               B = \(\frac{1}{2017}+\frac{2}{2016}+\frac{3}{2018}+...+\frac{2016}{2}+\frac{2017}{1}\)

               CMR :     A : B là số nguyên

 Bài 2 :

 a, Tìm x biết : 2019 - | x-2019 | = x

 b, Tìm \(x\inℤ\)để \(ℚ\)=\(\frac{4x-3}{3x+1}\)có giá trị là số tự nhiên 

 c, Tìm các số nguyên tố x,y sao cho : 15x + 10y = 2000

 Bài 3 :

 a, Cho ba số a,b,c thỏa mãn : \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

     Tính M : \(\frac{\left(ab+bc+ca\right)^{1008}}{a^{2019}+b^{2019}+c^{2019}}\)

b, Cho x,y,z ; a,b,c thỏa mãn : \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{ℤ}{4a-4b+c}\)

                                                   CMR : \(\frac{a}{x+2y+Z}=\frac{b}{2x+y-Z}=\frac{Z}{4x-4y+Z}\)

 Bài 4 : Cho hàm số : y = f(x) thỏa mãn : f (x1+x2) = f (x1) +f (x2)và f (x) - x.f (-x) = x+1           \(\left(\forall x\inℝ\right)\)

            a, CMR : M ( 0 ; 1 ) thuộc đồ thị hàm số 

            b, Tính f (2019)

 Bài 5 : cho đoạn thẳng AB ; D là trung điểm của AB . Trên cùng 1 nửa mặp phẳng bờ chứa AB vẽ 2 tia Ax , By cùng \(\perp\)AB. Trên Ax ,By lần lượt lấy C,D sao cho \(\widehat{COD}\)= 90o . Tia CD cắt tia DB tại E :

 1, CMR : a,\(\Delta CDE\)cân

                b, CO là tia phân giác của \(\widehat{ACD}\)

 2, Vẽ  \(OM\perp CD\).  CMR : AMB vuông tại M

 3, Gọi S là diện tích \(\Delta AMB\). Giả sử  AB = a . Tìm giá trị lớn nhất của S (theo a)

                                   ( ai trả lời nhanh nhất mk tick cho )

0
30 tháng 11 2015

b) để \(\left(x-7\right)^{x+2015}-\left(x-7\right)^{x+2016}=0\)

thì \(\left(x-7\right)^{x+2015}=\left(x-7\right)^{x+2016}\)

mà \(x+2015

nên \(x-7=x-7\Rightarrow x=7\)

30 tháng 11 2015

bài a)

|2x+3|=x+2

2x+3=x+2 hoặc -(2x+3)=x+2

2x-x=2-3            -2x-3=x+2

1x=-1                 -2x-x=2+3

x=-1                  -3x   =5

                           x=\(\frac{-5}{3}\)

11 tháng 7 2018

Câu 1 :  Ta có : 

\(\hept{\begin{cases}\left|x+y-5\right|\ge0\forall x;y\\\left|2x-y+8\right|\ge0\forall x;y\end{cases}\Rightarrow\left|x+y-5\right|+\left|2x-y+8\right|\ge0\forall x;y}\)

Dấu \("="\)xảy ra 

\(\Leftrightarrow\hept{\begin{cases}\left|x+y-5\right|=0\\\left|2x-y+8\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y-5=0\\2x-y+8=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y=5\\2x-y=-8\end{cases}}}\)

\(\Leftrightarrow x+y+2x-y=5+-8\)

\(\Leftrightarrow3x=-3\)

\(\Leftrightarrow x=-1\)

Mà \(x+y=5\Rightarrow y=5-\left(-1\right)=6\)

Vậy \(x=-1;y=6\)

Câu 2 : Ta có : 

\(\left|x\right|\ge0\forall x;\left|x+2\right|\ge0\forall x\)

\(\Rightarrow\left|x\right|+\left|x+2\right|\ge0\forall x\)

Dấu \("="\)xảy ra 

\(\Leftrightarrow\hept{\begin{cases}\left|x\right|=0\\\left|x+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-2\end{cases}\Leftrightarrow}}\)Loại 

Vậy không có TH x thỏa mãn 

Câu 3 : Ta có : 

\(\left|-y\right|\ge0\forall y\)

\(\Rightarrow\frac{-2}{5}-\left|-y\right|\le-\frac{2}{5}\)

Mà : \(\left|\frac{1}{2}-\frac{1}{3}+x\right|\ge0\forall x\)

\(\Rightarrow\left|\frac{1}{2}-\frac{1}{3}+x\right|=-\frac{2}{5}-\left|-y\right|\)( vô lý ) 

Vậy không có TH x thỏa mãn

11 tháng 7 2018

Câu 3: Ta có: \(|\frac{1}{2}-\frac{1}{3}+x|\ge0\) Mà \(-\frac{2}{5}-|-y|< 0\)

Vậy không tồn tại x,y.

14 tháng 10 2015

ngu thế ko biết lam à câu trả lời là: tao ko biet

 

9 tháng 9 2018

1) ADTCDTSBN

có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-7}=\frac{x-y-z}{3-5+7}=\frac{20}{5}=4.\)

=> ...