Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xx là x^2 hả ??? (tính sau nha)
b)Ta có \(\left|x-100\right|\ge0;\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow B\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-100=0\\y+200=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(B_{min}=-1\Leftrightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
c)pt o có GTLN
Tham khảo(nếu a ko có xx)
https://olm.vn/hoi-dap/detail/97637814260.html
a) Ta có: \(\left|x+2\right|\ge0\left(\forall x\right)\)
\(\Rightarrow15-\left|x+2\right|\le15\left(\forall x\right)\)
Dấu "=" xảy ra khi \(x+2=0\Rightarrow x=-2\)
Vậy Amax = 15 khi x = -2
b) Ta có: \(\left|y-4\right|\ge0\left(\forall x\right)\)
\(\Rightarrow\left|y-4\right|+20\ge20\left(\forall x\right)\)
Dấu" =" xảy ra khi \(y-4=0\Rightarrow y=4\)
Vậy Bmin = 20 khi y = 4
a) Ta có /x+2/\(\ge\)0 với \(\forall\)x
nên /x+2/+50\(\ge\)0 với mọi x
Dấu "=" xảy ra \(\Leftrightarrow\)/x+2/=0
\(\Leftrightarrow\)x=\(-2\)
Vậy GTNN của A là 50 khi x=\(-2\)
b)Ta có /x-100/\(\ge\)0 với mọi x
/y+200/\(\ge\)0 với mọi x
nên /x-100/+/y+200/-1\(\ge\)-1 với mọi x
Dấu"=" xảy ra \(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=100\\y=-200\end{matrix}\right.\)
Vậy GTNN của B=-1 khi x=100;y=-200
c)Ta có \(-\)/x+5/\(\le\)0 với mọi x
nên 2015\(-\)/x+5/\(\le\)2015 với mọi x
Dấu"=" xảy ra\(\Leftrightarrow\)x=\(-5\)
Vậy GTLN của bt trên là 2015 khi x=\(-5\)
Vì | x -3 | > hoặc = 0
Suy ra : |x-3|+50 >hoặc =50
Vì A nhỏ nhất suy ra | x-3 | +50 =50
Suy ra x-3 =0
Suy ra x=3
Vậy GTNN của A = 50 khi x=3
a) Ta có: \(x^4\ge0\) \(\forall x\)
\(\left(y-2\right)^2\ge0\) \(\forall y\)
\(\Rightarrow A\ge-8\). Dấu = khi <=> \(\hept{\begin{cases}x^4=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy min A = -8 <=> \(\hept{\begin{cases}x=0\\y=2\end{cases}}\)
a, Ta có: \(\left|7-x\right|\ge0\Rightarrow-\left|7-x\right|\le0\Rightarrow A=-100-\left|7-x\right|\le-100\)
Dấu "=" xảy ra khi |7 - x| = 0 => x = 7
Vậy MaxA = -100 khi x = 7
b, Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left|2-y\right|\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\Rightarrow-\left(x+1\right)^2-\left|2-y\right|\le0\)
\(\Rightarrow B=-\left(x+1\right)^2-\left|2-y\right|+11\le11\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}-\left(x+1\right)^2=0\\\left|2-y\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy MaxB = 11 khi x = -1 và y = 2
c, Ta có: \(\hept{\begin{cases}\left(x+5\right)^2\ge0\\\left(2y-6\right)^2\ge0\end{cases}}\Rightarrow\left(x+5\right)^2+\left(2y-6\right)^2\ge0\)
\(\Rightarrow C=\left(x+5\right)^2+\left(2y-6\right)^2+1\ge1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+5\right)^2=0\\\left(2y-6\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=3\end{cases}}\)
Vậy MinC = 1 khi x = -5 và y = 3
a. Vì \(\left|x-1\right|\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow\left|x-1\right|+\left(y+2\right)^2\ge0\forall x;y\)
\(\Rightarrow\left|x-1\right|+\left(y+2\right)^2+2020\ge2020\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\y=-2\end{cases}}}\)
Vậy Bmin = 2020 <=> x = 1 và y = - 2
b. Vì \(x^2\ge0\forall x\Rightarrow-x^2\le0\)
\(\Rightarrow-x^2+2019\le2019\)
Dấu "=" xảy ra \(\Leftrightarrow-x^2=0\Leftrightarrow x=0\)
Vậy Pmax = 2019 <=> x = 0
Vì \(\left|y-1\right|\ge0\forall y;\left(t+2\right)^4\ge0\forall t\)
\(\Rightarrow-\left|y-1\right|-\left|t+2\right|^4\le0\forall y;t\)
\(\Rightarrow-\left|y-1\right|-\left|t-2\right|^4+21\le21\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|y-1\right|=0\\\left|t+2\right|^4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y-1=0\\t+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=1\\t=-2\end{cases}}\)
Vậy Qmax <=> y = 1 và t = 2
Cảm ơn bạn Death Note nha