Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=30+2^4\times30+2^8\times30+..2^{56}\times30\)
Vậy A chia hết cho 30 nên A cũng chia hết cho 15
hay nói cách khác A là Bội của 15
- 27/1=81/3 (Ngược lại)
- 3/9=27/81 (Ngược lại)
- 27/9=3/1 (Ngược lại)
- 81/9=27/3 (Ngược lại)
- 1/27=3/81 (Ngược lại)
\(\dfrac{1}{1}\) = \(\dfrac{3}{3}\) = \(\dfrac{9}{9}\) = \(\dfrac{27}{27}\) = \(\dfrac{81}{81}\)
c: \(=\dfrac{-27\cdot100}{-30}=\dfrac{2700}{30}=90\)
a.
$5^{75}=(5^5)^{15}=3125^{15}$
$7^{60}=(7^4)^{15}=2401^{15}$
Mà $3125> 2401$ nên $5^{75}> 7^{60}$
b.
$3^{21}=3.3^{20}=3.9^{10}$
$2^{31}=2.2^{30}=2.8^{10}< 3. 9^{10}$
$\Rightarrow 3^{21}> 2^{31}$
S = 1.3 + 2.4 + 3.5 + 4.6 + ..... + 99.101 + 100.102
= 1.(2 + 1) + 2(3 + 1) + 3.(4 + 1) + ......... + 99(100 + 1) + 100.(101 + 1)
= 1.2 + 1 + 2.3 + 1 + 3.4 + 3 + ........ + 99.100 + 99 + 100.101 + 100
= (1.2 + 2.3 + 3.4 + ....... + 100.101 ) + (1 + 2 + 3 + ....... + 100)
Ta có công thức :
1.2+2.3+3.4+....+n(n+1)=n(n+1)(n+2)/3
1+2+3+...+n=n(n+1)/2
Áp dụng vào bài toán ta được :
S=100.101.102/3 +100.101/2
= 343400 + 5050
= 348450
B(34):{0;34;68;102;136;...}
Mà x<102
=> x E {0;34;68;102}
x € B(34)= {0;34;68;102;...}
Mà x<102 nên : x € {0;34;68}
Bài 2:
a: =>2/3-x=-1/3
hay x=1
b: =>x=-2/5-2/5=-4/5
a: =>2/3-x=-1/3
hay x=1
b: =>x=-2/5-2/5=-4/5