K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2019

\(xy+3x-7y=23\)

\(\Leftrightarrow x\left(y+3\right)-7y-21=2\)

\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)=2\)

\(\Leftrightarrow\left(x-7\right)\left(y+3\right)=2=1.2=2.1=\left(-1\right).\left(-2\right)=\left(-2\right).\left(-1\right)\)

Lập bảng:

\(x-7\)\(1\)\(2\)\(-1\)\(-2\)
\(y+3\)\(2\)\(1\)\(-2\)\(-1\)
\(x\)\(8\)\(9\)\(6\)\(5\)
\(y\)\(-1\)\(-2\)\(-5\)\(-4\)

Vậy \(\left(x,y\right)\in\left\{\left(8,-1\right);\left(9,-2\right);\left(6,-5\right);\left(5,-4\right)\right\}\)

11 tháng 12 2017

Chị gái xinh đẹp à. Câu hỏi của chị khó quá ko ai trả lời. Thôi thì.......k cho mem đi😉

19 tháng 10 2018

\(x+11\)\(⋮\)\(x+2\)

<=>   \(x+2+9\)\(⋮\)\(x+2\)

mà  \(x+2\)\(⋮\)\(x+2\)

=>  \(9\)\(⋮\)\(x+2\)

hay  \(x+2\)\(\inƯ\left(9\right)\)

đến đây tự lm tiếp

10 tháng 1 2017

bài 1

Xét tổng : (ax - by) + (ay - bx) = ax - by + ay - bx = (ax + ay) - (by + bx) = a(x + y) - b(x + y) = (a - b)(x + y) chia hết cho x + y .

Vậy (ax - by) + (ay - bx) chia hết cho x + y (1)

Mà ax - by chia hết cho x + y (2)

Từ (1) và (2) suy ra ay - bx chia hết cho x + y (đpcm) 

bài 2 

a)

a) Gộp thành từng nhóm bốn số, ta được 25 nhóm, mỗi nhóm bằng - 4. Do đó A = - 100. Vì thế A chia hết cho 2, chia hết cho 5, không chia hết cho 3.

b)

b, A = 2^2*5^2

A có 9 ước tự nhiên và 18 ước nguyên

bài 3 bạn tự làm nhé dài lắm mình mỏi tay rồi

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

10 tháng 2 2017

to cung dang thac mac cam on

6 tháng 3 2023

Bài 1 :

A = 12 + 22 + 32 +....+n2 

A = 12 + 2.(1+1) + 3.(2 +1) + 4.( 3 +1) +.....+n(n-1 + 1)

A = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 +.....+ n.(n-1) + n

A = ( 1 + 2 + 3 + 4 +....+n) + ( 1.2 + 2.3 + 3.4 +....+(n-1).n

A = (n+1).{(n-1):n+1)/2 +1/3.[1.2.3 +2.3.3 +.....+(n-1)n.3]

A = (n+1).n/2+1/3.[1.2.3 +2.3.(4-1)+ ...+(n-1).n [(n+1) - (n -2)]

A = (n+1)n/2+1/3.( 1.2.3 + 2.3.4 -1.2.3 +..+ (n-1)n(n+1)- (n-2)(n-1)n)

A =(n+1)n/2 + 1/3.(n-1)n(n+1)

A = n(n+1)[1/2 + 1/3 .(n-1)]

A = n.(n+1) \(\dfrac{3+2n-2}{6}\)

A= n.(n+1)(2n+1)/6

Bài 2 : 

a, (x+1) +(x+2) + (x+3)+...+(x+10) = 5070

    (x+10 +x+1).{( x+10 - x -1): 1 +1):2  = 5070

    (2x + 11)10 : 2 = 5070 

     ( 2x + 11)5 = 5070

      2x+ 11 = 5070:5

         2x = 1014 - 11

        2x =   1003

          x = 1003 :2

          x = 501,5 

        b, 1 + 2 + 3 +...+x = 820

           ( x + 1)[ (x-1):1 +1] : 2 = 820

           (x +1).x = 820 x 2

           (x +1).x = 1640

            (x +1) .x = 40 x 41

                 x = 40 

 

 

20 tháng 11 2017

a, x = -80

b, x = -11 hoặc -5

c, x =4

d, x  thuộc 1 , 7

 sorry mik ko bik dùng dấu thuộc nhé

20 tháng 11 2017

a,-80

b,-5

c,4

d,1;7

8 tháng 5 2016

bài 1

a/ta có -|x+2015|<=0

=>2016-|x+2015|<=2016-0

A>=2016 vậy GTLN của A=2016 khi x=-2015

b/

ta có |y-2017|>=0

=>|y-2017|+2016>=0+2016

A>=2016 vậy GTNN của A=2016 khi x=2017

31 tháng 10 2016

Tìm GTNN hoặc GTLN (nếu có)

a) B = 2013 - 3 /x + 2012/

b) C = (x+3)2 - 2010

c) D = 2017-5(x-3)2

d) E = 5-x phần 7-x

28 tháng 2 2020

Bài 1 :                                             Bài giải

\(B=3^1+3^2+...+3^{2020}\)

\(B=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2019}+3^{2020}\right)\)

\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}\left(1+3\right)\text{ }⋮\text{ }3\)

\(B=3^1+3^2+...+3^{2020}\)

\(B=\left(3^1+3^2+3^3+3^4\right)+...+\left(3^{2018}+3^{2019}+3^{2020}\right)\)

\(B=3\left(1+3+3^2\right)+...+3^{2018}\left(1+3+3^2\right)\)

\(B=3\cdot13+...+3^{2018}\cdot13\text{ }⋮\text{ }-13\)

Bài 2 :                                       Bài giải

\(xy+3x-2y=11\)

\(x\left(y+3\right)-2\left(y+3\right)+6=11\)

\(\left(y+3\right)\left(x-2\right)=5\)

\(\Rightarrow\text{ }y+3\text{ ; }x-2\text{ }\inƯ\left(5\right)\)

Ta có bảng :

x - 2 - 5 - 1  1  5
y + 3 - 1 - 5  5  1
x - 3   1  3  7
y - 4 - 8  2  - 2

Vậy \(\left(x\text{ ; }y\right)=\left(-3\text{ ; }-4\right)\text{ ; }\left(1\text{ ; }-8\right)\text{ ; }\left(3\text{ ; }2\right)\text{ ; }\left(7\text{ ; }-2\right)\)

28 tháng 2 2020

\(B=3+3^2+3^3+3^4+...+3^{2020}\)

\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{2018}+3^{2019}+3^{2020}\right)\)

\(\Leftrightarrow B=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2018}\left(1+3+3^2\right)\)

\(\Leftrightarrow B=3\cdot13+3^4\cdot13+....+3^{2018}\cdot13\)

\(\Leftrightarrow B=13\left(3+3^4+...+3^{2018}\right)\)

\(\Leftrightarrow B⋮13\left(đpcm\right)\)

Bạn @Fudo sai mất chỗ B chia hết cho 4 bạn viết nhầm thành chia hết cho 3