Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) (x+1) + (x+2) + ... + (x+5) = 90
=> 5x + ( 1 + 2 + ... + 5 ) = 90
5x + 15 = 90
5x = 90 - 15
5x = 75
x = 75 : 5
x = 15
d) (x+1) + (x+2) + .... + (x+100) = 20150
=> 100x + ( 1+2+...+100 ) = 20150
100x + 5050 = 20150
100x = 20150 - 5050
100x = 15100
x = 15100 : 100
x = 151
Ta có : (x + 1) + (x + 2) + (x + 3) + (x + 4) + (x + 5) = 90
<=> x + x + x+ x + x + (1 + 2 + 3 + 4 + 5) = 90
<=> 5x + 15 = 90
=> 5x = 75
=> x = 15
x + ( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ( x + 4 ) + ... + ( x + 100 ) = 11 000
<=> ( x + x + x + x + x + ... + x ) + ( 1 + 2 + 3 + 4 + ... + 100 ) = 11 000
<=> 101x + \(\frac{\left(100+1\right)\left[\left(100-1\right):1+1\right]}{2}\)= 11 000 ( vì sao em để 101x thì idol biết mà :33 )
<=> 101x + 5050 = 11 000
<=> 101x = 5950
<=> x = 5950/101
\(\left(X+\frac{1}{1.3}\right)+\left(X+\frac{1}{3.5}\right)+...+\left(X+\frac{1}{23.25}\right)=11.X+\)\(\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(\Leftrightarrow12X+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)+11X\)\(+\frac{\left(1+\frac{1}{3}+...+\frac{1}{81}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)}{2}\)
\(\Leftrightarrow X+\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{23}+\frac{1}{23}-\frac{1}{25}\right)=\frac{242}{243}:2\)
\(\Leftrightarrow X+\frac{12}{25}=\frac{121}{243}\)
\(\Leftrightarrow X=\frac{109}{6075}\)
Vậy X=109/6075
Chắc Sai kết quả chứ công thức đúng nha!!!...
Fighting!!!...
Đặt:
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{25-23}{23.25}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}=1-\frac{1}{25}=\frac{24}{25}\)
=> \(A=\frac{12}{25}\)
Đặt \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)=1-\frac{1}{3^5}=\frac{242}{243}\)
=> \(2B=\frac{242}{243}\Rightarrow B=\frac{121}{243}\)
Giải phương trình:
\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}\right)+...+\left(x+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)\)
\(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{242}\right)\)
\(12x+\frac{12}{25}=11x+\frac{121}{243}\)
\(12x-11x=\frac{121}{243}-\frac{12}{25}\)
\(x=\frac{109}{6075}\)
(x+1) + (x+2)+(x+3)+(x+4)+(x+5)=55
=> 5x + 15=55
=>5x=55-15=40
=>x=40/5
Vây x= 8
5.(x - 1) + 6.(x - 2) = 5
5x - 5 + 6x - 12 = 5
11x - 17 = 5
11x = 5 + 17
11x = 22
x = 2
3.(x - 2) + 6.(x - 1) = 6
3x - 6 + 6x - 6 = 6
9x - 12 = 6
9x = 6 + 12
9x = 18
x = 2
5 ( x - 1 ) + 6 ( x - 2 ) = 5
<=> 5x - 5 + 6x - 12 = 5
<=> 11x = 22
<=> x = 2
Vậy x = 2
\(\Rightarrow Xx100+\left(1+2+3+...+100\right)=7400\)
\(\Rightarrow Xx100+\left[\left(100+1\right)x\left(100:2\right)\right]=7400\)
\(\Rightarrow Xx100+5050=7400\)
\(\Rightarrow Xx100=7400-5050\)
\(\Rightarrow Xx100=2350\)
\(\Rightarrow X=23,5\)
Vậy x=23,5
Ta có ( x + 1 ) + ( x + 2 ) + ... + ( x + 100 ) = 7400
=> 100x + ( 1 + 2 + 3 + ... + 100 ) = 7400
Đặt 1 + 2 + 3 ... + 100 = S
Số số hạng là 100
Tổng S=( ( 100 + 1 ) x 100 ) : 2 = 5050
=> 100x + 5050 = 7400
=> 100x = 2350
=>x = 23,5
Hok tốt!