Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) (x+1) + (x+2) + ... + (x+5) = 90
=> 5x + ( 1 + 2 + ... + 5 ) = 90
5x + 15 = 90
5x = 90 - 15
5x = 75
x = 75 : 5
x = 15
d) (x+1) + (x+2) + .... + (x+100) = 20150
=> 100x + ( 1+2+...+100 ) = 20150
100x + 5050 = 20150
100x = 20150 - 5050
100x = 15100
x = 15100 : 100
x = 151
Ta có : (x + 1) + (x + 2) + (x + 3) + (x + 4) + (x + 5) = 90
<=> x + x + x+ x + x + (1 + 2 + 3 + 4 + 5) = 90
<=> 5x + 15 = 90
=> 5x = 75
=> x = 15
(x+1) + (x+2)+(x+3)+(x+4)+(x+5)=55
=> 5x + 15=55
=>5x=55-15=40
=>x=40/5
Vây x= 8
5.(x - 1) + 6.(x - 2) = 5
5x - 5 + 6x - 12 = 5
11x - 17 = 5
11x = 5 + 17
11x = 22
x = 2
3.(x - 2) + 6.(x - 1) = 6
3x - 6 + 6x - 6 = 6
9x - 12 = 6
9x = 6 + 12
9x = 18
x = 2
5 ( x - 1 ) + 6 ( x - 2 ) = 5
<=> 5x - 5 + 6x - 12 = 5
<=> 11x = 22
<=> x = 2
Vậy x = 2
\(\Rightarrow Xx100+\left(1+2+3+...+100\right)=7400\)
\(\Rightarrow Xx100+\left[\left(100+1\right)x\left(100:2\right)\right]=7400\)
\(\Rightarrow Xx100+5050=7400\)
\(\Rightarrow Xx100=7400-5050\)
\(\Rightarrow Xx100=2350\)
\(\Rightarrow X=23,5\)
Vậy x=23,5
\(=\frac{3}{1}.\frac{4}{2}.\frac{5}{3}...\frac{2018}{2016}.\frac{2019}{2017}\\ =\frac{3.4.5...2018.2019}{1.2.3...2016.2017}\\ =\frac{2018.2019}{2}=1009.2019\)
a,3x-3+6x-12=5
9x-15=5
9x=20
x=20/9
b,3x-6+6x-6=6
9x-12=6
9x=18
x=2
c,4x+4+5x+10=3x+20
9x+14=3x+20
9x-3x=6
6x=6
x=1
a) 3.(x-1) + 6.(x-2) = 5
3.x - 3 + 6.x - 12 = 5
9.x - 15 = 5
9.x = 5 + 15
9.x = 20
x = \(\frac{20}{9}\)
Vậy x = \(\frac{20}{9}\)
b) 3.(x-2) + 6.(x-1) = 6
3.x - 6 + 6.x - 6 = 6
9.x - 12 = 6
9.x = 6 + 12
9.x = 18
x = 18 : 9
x = 2
Vậy x = 2
c) 4.(x+1) + 5.(x+2) = 3.x +20
4.x +4 +5.x +10 = 3.x +20
9.x + 14 = 3.x +20
9.x - 3.x = 20 - 14
6.x = 6
x = 6 : 6
x = 1
Vậy x = 1
=\(\frac{1}{2}x\frac{2}{3}x...x\frac{2017}{2018}\)
=\(\frac{1}{2018}\)
bạn trừ ra là đc
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{2017}\right)\cdot\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2016}{2017}\cdot\frac{2017}{2018}\)
\(=\frac{1\cdot2\cdot3\cdot....\cdot2016\cdot2017}{2\cdot3\cdot4\cdot....\cdot2017\cdot2018}\)
\(=\frac{1}{2018}\)
x + ( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ( x + 4 ) + ... + ( x + 100 ) = 11 000
<=> ( x + x + x + x + x + ... + x ) + ( 1 + 2 + 3 + 4 + ... + 100 ) = 11 000
<=> 101x + \(\frac{\left(100+1\right)\left[\left(100-1\right):1+1\right]}{2}\)= 11 000 ( vì sao em để 101x thì idol biết mà :33 )
<=> 101x + 5050 = 11 000
<=> 101x = 5950
<=> x = 5950/101
x + (x + 1) + (x + 2) + ......+ (x + 100) = 11000
x +( x + x + ...... + x ) + (1 + 2 + ...... + 100) = 11000
x + 100x + 5050 = 11000
x + 100x = 5950
101x = 5950
x = 5950 : 101
x = 5950 : 100 + 5950 : 1
x = 59,50 + 5950
x = 6009,50