Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\frac{1}{2}x\frac{2}{3}x...x\frac{2017}{2018}\)
=\(\frac{1}{2018}\)
bạn trừ ra là đc
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{2017}\right)\cdot\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2016}{2017}\cdot\frac{2017}{2018}\)
\(=\frac{1\cdot2\cdot3\cdot....\cdot2016\cdot2017}{2\cdot3\cdot4\cdot....\cdot2017\cdot2018}\)
\(=\frac{1}{2018}\)
\(=\left(\frac{1}{2}\right).\left(\frac{2}{3}\right).\left(\frac{3}{4}\right)....\left(\frac{2017}{2018}\right)\)
\(=\frac{1.2.3....2017}{2.3.4...2018}\)
\(=\frac{1}{2018}\)
\(=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot...\cdot\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{2017}{2018}\)
\(=\frac{1}{2018}\)
\(=\frac{3}{1}.\frac{4}{2}.\frac{5}{3}...\frac{2018}{2016}.\frac{2019}{2017}\\ =\frac{3.4.5...2018.2019}{1.2.3...2016.2017}\\ =\frac{2018.2019}{2}=1009.2019\)
=\(\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...x\frac{2013}{2014}x\frac{2014}{2015}\)
=\(\frac{1x2x3x...x2013x2014}{2x3x4x...x2014x2015}\)
=\(\frac{1}{2015}\)
( Dau x la dau nhan)
Hình như đề bạn ghi sai rồi, nó ko theo thứ tự để tính nhanh
thế thì hợp lý nha bn