K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔAKB nội tiếp

AB là đường kính

Do đó: ΔAKB vuông tại K

Xét tứ giác AKEH có \(\widehat{EHA}+\widehat{EKA}=90^0+90^0=180^0\)

nên AKEH là tứ giác nội tiếp

=>A,K,E,H cùng thuộc một đường tròn

b: Xét (O) có

\(\widehat{KAI}\) là góc nội tiếp chắn cung KI

\(\widehat{KBI}\) là góc nội tiếp chắn cung KI

Do đó: \(\widehat{KAI}=\widehat{KBI}\)

=>\(\widehat{KAE}=\widehat{KBC}\)

c: Xét (O) có

ΔAIB nội tiếp

AB là đường kính

Do đó: ΔAIB vuông tại I

Xét ΔAHE vuông tại H và ΔAIB vuông tại I có

\(\widehat{HAE}\) chung

Do đó: ΔAHE đồng dạng với ΔAIB

=>\(\dfrac{AH}{AI}=\dfrac{AE}{AB}\)

=>\(AE\cdot AI=AB\cdot AH\)

Xét ΔBHE vuông tại H và ΔBKA vuông tại K có

góc HBE chung

Do đó: ΔBHE đồng dạng với ΔBKA

=>\(\dfrac{BH}{BK}=\dfrac{BE}{BA}\)

=>\(BH\cdot BA=BE\cdot BK\)

\(AE\cdot AI+BE\cdot BK\)

\(=AH\cdot AB+BH\cdot AB\)

\(=AB^2=4R^2\)

 

a: góc AKB=1/2*180=90 độ

góc AKE+góc AHE=180 độ

=>AKEH nội tiếp

b: XétΔCKM và ΔCNA có

góc CKM=góc CNA

góc C chung

=>ΔCKM đồng dạng với ΔCNA

=>CK/CN=CM/CA

=>CN*CM=CK*CA

XétΔCKE vuông tại K và ΔCHA vuông tại H có

góc HCA chung

=>ΔCKE đồng dạng với ΔCHA

=>CK/CH=CE/CA

=>CK*CA=CH*CE=CN*CM

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MFBài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.Bài 3....
Đọc tiếp

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MF

Bài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.

Bài 3. Cho đường tròn (O), hai dây AB và AC vuông góc với nhau có độ dài theo thứ tự bằng 10cm và 24cm. a) Tính khoảng cách từ tâm đến mỗi dây b) chứng minh rằng ba điểm B, O, C thẳng hàng.

Bài 4. Cho đường tròn (O), hai dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Trên tia đối của tia AB lấy điểm E sao cho AE = BM. Trên tia đối của tia CD lấy điểm F sao cho CF = DM. Chứng minh rằng OE = OF.

Bài 5. Cho đường tròn (O), hai dây AB và CD có AB > CD, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. So sánh các độ dài MH và MK. 

giải giúp mình vs ạ . tạo mình đang cần gấp . cảm ơn nha

 

0

a: góc AFB=1/2*sđ cung AB=90 độ

góc KHB+góc KFB=90 độ

=>BHKF nội tiếp

b: Xét ΔBHE vuông tại H và ΔBFA vuông tại F có

goc B chung

=>ΔBHE đồng dạng với ΔBFA

=>BH/BF=BE/BA

=>BH*BA=BF*BE

5 tháng 6 2018

3, ta có: góc MFA = \(\frac{1}{2}\).(sđ cung AM + sđ cung BQ)   (góc có đỉnh nằm trong đường tròn )

và góc MPQ = \(\frac{1}{2}\).sđ cung MQ = \(\frac{1}{2}\).. (sđ cung MB + sđ cung BQ ) (góc nội tiếp)

mà sđ cung AM = sđ cung MB (do M là điểm chính giữa cung AB )

=> góc MFA = góc MPQ

=> góc ngoài MFA tại hai đỉnh có hai góc đối nhau bằng nhau thì tứ giác EFQP là tứ giác nội tiếp hay E,F,P,Q cùng thuộc 1 đường tròn (đpcm)