Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ĐKXĐ: \(x\ge-5\)
\(pt\Leftrightarrow x+5=9\Leftrightarrow x=9-5=4\left(tm\right)\)
2) ĐKXĐ: \(x\ge3\)
\(pt\Leftrightarrow3\sqrt{x-3}-\sqrt{x-3}=6\)
\(\Leftrightarrow2\sqrt{x-3}=6\Leftrightarrow\sqrt{x-3}=3\)
\(\Leftrightarrow x-3=9\Leftrightarrow x=12\left(tm\right)\)
3) ĐKXĐ: \(x\ge-1\)
\(pt\Leftrightarrow\sqrt{\left(x+1\right)^2}-2\sqrt{x+1}=0\)
\(\Leftrightarrow x+1-2\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x+1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+1=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)
Ta có: \(16a-54a^2-1.06=0\)
\(\Leftrightarrow-54a^2+16a-1.06=0\)
Ta có: \(\Delta=b^2-4\cdot ac=16^2-4\cdot\left(-54\right)\cdot\left(-1.06\right)=27.04\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là
\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-16-5.2}{2\cdot\left(-54\right)}=\dfrac{53}{270}\\x_2=\dfrac{-16+5.2}{2\cdot\left(-54\right)}=\dfrac{1}{10}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{53}{270};\dfrac{1}{10}\right\}\)
\(16a-54a^2-1,06=0\\ \Leftrightarrow-54a^2+16a-1,06=0\)
Xét \(\Delta=16^2-4.\left(-54\right).\left(-1,06\right)=\dfrac{676}{25}\)
=> Phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-16+\sqrt{\dfrac{676}{25}}}{2.\left(-54\right)}=\dfrac{1}{10}\\ x_2=\dfrac{-16-\sqrt{\dfrac{676}{25}}}{2.\left(-54\right)}=\dfrac{53}{270}\)
2.5
Thay x=1 và y=2 vào y=ax+5, ta được:
a+5=2
hay a=-3
Câu này mk lm r nha!
Cũng xin cảm ơn bn đã giúp mk nha.Cảm ơn nhìu🥰
Ta có: \(\hept{\begin{cases}a;b;c\ge0\\a+b+c=1\end{cases}}\Rightarrow0\le a;b;c\le1\Rightarrow\hept{\begin{cases}a^2\le a\\b^2\le b\\c^2\le c\end{cases}}\)
\(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)
\(=\sqrt{a+4a+4}+\sqrt{b+4b+4}+\sqrt{c+4c+4}\)
\(\ge\sqrt{a^2+4a+4}+\sqrt{b^2+4b+4}+\sqrt{c^2+4c+4}=a+2+b+2+c+2=7\)
\("="\Leftrightarrow a;b;c\) là hoán vị của 0;0;1