K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2016

a) -a - (b - c - c)

 = 2c - a - b

b) - (a-b+c) - (a+b+c)

 = -2a - 2c

c) - a - (b+c)

 = -a - b - c

d) -a.(b-a-c)

 = a2 - ab + ac

e) (a+b) - (a-b) + (a-c) - (a+c)

 = 2b - 2c

f) (a+b-c) + (a-b+c) - (b+c-a) - (a-b-c)

 = 2a

17 tháng 3 2020

a.(b-c)+c.(a-b)

= ab - ac + ac - bc

= ab - bc

= b(a - c)

a.(b-c)-b.(a+c)

= ab - ac - ba - bc

= -ac - bc

= -c(a + b)

a.(b+c)-b.(a-c)

= ab + ac - ba + bc

= ac + bc

= c(a + b)

không cần k đâu bạn à

17 tháng 3 2020

2. a(b - c) + c(a - b) = ab - ac + ac - bc = ab - bc = b(a - c)

3. a(b - c) - b(a + c) = ab - ac - ab - bc = -ac - bc = -c(a + b)

4. a(b + c) - b(a - c) = ab + ac - ab + bc = ac + bc = c(a + b)

~~ Học tốt ~~ 

E=(-a-b+c+d)-(d+c-b-2a)

E=-a-b+c+d-d-c+b+2a

E=-a+(-)b+c+d+(-d)+(-c)+b+2a

E=-a+(-b)+c+d+(-d)+(-c)+b+2a

E=(2a-a)+(-b+b)+(-d+d)+(-c+c)=a+0+0+0=a

8 tháng 2 2017

thanks nhiều nha ĐỨC THỊNH

20 tháng 1 2016

a) Ta có: -a - b - b = -a - b + c

Vậy: (-a-b+c) - (-a-b-c) = (-a-b+c) - (-a-b+c) = (-a-b+c) : 2

b) (-1-1+-2) : 2 = (-2+-2) : 2 = (-4) : 2 = -2

18 tháng 3 2020

A2=b.(a-c)-c.(a-b)

A2= ba - bc - ca + cb

A2 = ( ba - ca ) + ( bc - cb ) 

A2 = a. ( b - c ) + 0

Với a = -20 , b-c = -5  thì:

A2 = a. ( b - c ) 

A2 = -20 . ( - 5 )

A2 = 100

Ta có : 100 = 10 . 10

\(\Rightarrow\)A = 10.

Vậy A = 10

~ HOK TỐT ~

18 tháng 3 2020

Có b - c = ( - 5 )<=>\(b=c-5\)

Thay \(a=-20\),\(b=c-5\)vào \(A\)ta có

\(A^2=\)\(\left(c-5\right)\left(-20-c\right)-c\left(-20-c+5\right)\)

     \(=-20c-c^2+100+5c-c\left(-15-c\right)\)

   \(=100-15c-c^2+15c+c^2\)\(=100\)

\(\Rightarrow A=10\)hoặc \(A=-10\)

2 tháng 2 2019

a,A= -a-b+c+a+b+c=2c

b, khi a=1,b=-1,c=-2 thì 

A=2(-2)=-4

2 tháng 2 2019

a)

\(A=\left(-a-b+c\right)-\left(-a-b-c\right)\)

\(A=-a-b+c-\left(-a\right)+b+c\)

\(A=-a+\left(-b\right)+c+a+b+c\)

\(A=\left[\left(-a\right)+a\right]+\left[\left(-b\right)+b\right]+\left(c+c\right)\)

\(A=0+0+2c\)

\(A=2c\)

____________________________________________________________________________

b)

Cách 1 :  \(A=\left(-1-\left(-1\right)+\left(-2\right)\right)-\left(1-\left(-1\right)-\left(-2\right)\right)\)

\(A=-1-\left(-1\right)+\left(-2\right)-\left(-1\right)+\left(-1\right)+\left(-2\right)\)

\(A=-1+1+\left(-2\right)+1+\left(-1\right)+\left(-2\right)\)

\(A=\left[\left(-1\right)+1+1+\left(-1\right)\right]+\left[\left(-2\right)+\left(-2\right)\right]\)

\(A=0+\left(-4\right)=\left(-4\right)\)

Cách 2 : Từ ý   a   suy ra :

\(A=\left(-2\right)\cdot2=\left(-4\right)\)

9 tháng 4 2019

A=a+b-a+b+a-c-a-c=2b-2c

B=a+b-c+a-b+c-b+c-a-a+b+c=2c

9 tháng 4 2019

\(A=\left(a+b\right)-\left(a-b\right)+\left(a-c\right)-\left(a+c\right)\)

\(\Leftrightarrow A=a+b-a+b+a-c-a-c\)

\(\Leftrightarrow A=\left(a-a+a-a\right)+\left(b+b\right)-\left(c+c\right)\)

\(\Leftrightarrow A=0+2b-2c\)

\(\Leftrightarrow A=2b-2c\)

\(\Leftrightarrow A=2\left(b-c\right)\)

27 tháng 1 2023

\(D=\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(a-b-c\right)\)

\(D=a+b-c-a+b-c+b+c-a-a+b+c\)

\(D=\left(a-a-a-a\right)+\left(b+b+b+b\right)+\left(c+c-c-c\right)\)

\(D=4b-3a\)

7 tháng 3 2020

a(b-c)-a(b+d)=-a(c+d)

<=> ab-ac-ab-ad=-ac-ad

<=> (ab-ab)+-ac-ad=-ac-ad

<=> 0-ac-ad=-ac-ad

<=>-ac-ad=-ac-ad (đpcm)

7 tháng 3 2020

a(b-c)-a(b+d)=-a(c+d)

Ta có : a(b-c)-a(b+d)

       = ab - ac - ab - ad

       = -ac - ad

       = -a( c + d ) \(\rightarrow\)ĐPCM

# HOK TỐT #