Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta biết hàm số y = f(x) có cực trị khi phương trình y’ = 0 có nghiệm và y’ đổi dấu khi qua các nghiệm đó.
Ta có:
Xét y’ = 0, ta có: y′ = 3 x 2 − 2mx + (m – 2/3)
∆ ’ > 0 khi m < 1 hoặc m > 2 (∗)
Để hàm số có cực trị tại x = 1 thì
y′(1) = 3 − 2m + m – 2/3 = 0 ⇔ m = 7/3, thỏa mãn điều kiện (∗)
Với m = 7/3 thì hàm số đã cho trở thành:
Ta có:
Vì y′′(1) = 6 – (14/3) > 0 nên hàm số đạt cực tiểu tại x = 1 và y CT = y(1) = (16/3).
Ta biết hàm số y = f(x) có cực trị khi phương trình y’ = 0 có nghiệm và y’ đổi dấu khi qua các nghiệm đó.
Ta có:
Xét y’ = 0, ta có: y′ = 3 x 2 − 2mx + (m – 2/3)
Δ’ > 0 khi m < 1 hoặc m > 2 (∗)
Để hàm số có cực trị tại x = 1 thì
y′(1) = 3 − 2m + m – 2/3 = 0 ⇔ m = 7/3, thỏa mãn điều kiện (∗)
Với m = 7/3 thì hàm số đã cho trở thành:
Ta có:
Vì y′′(1) = 6 – (14/3) > 0 nên hàm số đạt cực tiểu tại x = 1 và y C T = y(1) = (16/3).
a) y′ = 3 x 2 + 2(m + 3)x + m
y′ = 0 ⇔ 3 x 2 + 2(m + 3)x + m = 0
Hàm số đạt cực trị tại x = 1 thì:
y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3
Khi đó,
y′ = 3 x 2 – 3;
y′′ = 6x;
y′′(1) = 6 > 0;
Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.
b) y′ = −( m 2 + 6m) x 2 − 4mx + 3
y′(−1) = − m 2 − 6m + 4m + 3 = (− m 2 − 2m – 1) + 4 = −(m + 1)2 + 4
Hàm số đạt cực trị tại x = -1 thì :
y′(−1) = − ( m + 1 ) 2 + 4 = 0 ⇔ ( m + 1 ) 2 = 4
⇔
Với m = -3 ta có y’ = 9 x 2 + 12x + 3
⇒ y′′ = 18x + 12
⇒ y′′(−1) = −18 + 12 = −6 < 0
Suy ra hàm số đạt cực đại tại x = -1.
Với m = 1 ta có:
y′ = −7 x 2 − 4x + 3
⇒ y′′ = −14x − 4
⇒ y′′(−1) = 10 > 0
Suy ra hàm số đạt cực tiểu tại x = -1
Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.
Lời giải:
Viết lại hàm số: \(y=\frac{1}{3}mx^3-(m-1)x^2+3(m-2)x+\frac{1}{3}\)
Ta có \(y'=mx^2-2(m-1)x+3(m-2)\)
a) Trước tiên, để hàm số đạt cực trị tại $x=0$ thì $x=0$ phải là nghiệm của pt \(y'=0\Leftrightarrow 3(m-2)=0\Leftrightarrow m=2\)
Thử lại: \(y'=2x^2-2x\)
\(y'=0\Leftrightarrow x=0\) hoặc \(x=1\). Lập bảng biến thiên ta thấy đúng là $y$ cực đại tại $x=0$
Vậy $m=2$
b) Tương tự như phần a, để hàm số đạt cực trị tại $x=-1$ thì $x=-1$ phải là nghiệm của pt \(y'=0\)
\(\Leftrightarrow m(-1)^2-2(m-1)(-1)+3(m-2)=0\)
\(\Leftrightarrow m=\frac{4}{3}\)
Thử lại: \(y'=\frac{4}{3}x^2-\frac{2}{3}x-2\). Có \(y'=0\Leftrightarrow x=\frac{3}{2}\) hoặc $x=-1$. Lập bảng biến thiên ta thấy $y$ cực tiểu tại $x=\frac{3}{2}$ chứ không phải tại $x=-1$
Vậy không tồn tại $m$ thỏa mãn.
c) Hàm số có cực đại và cực tiểu khi $y'=0$ có hai nghiệm phân biệt.
Hay $mx^2-2(m-1)x+3(m-2)=0$ có hai nghiệm phân biệt
Do đó \(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m-1)^2-3m(m-2)>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ -2m^2+4m+1>0\Leftrightarrow \frac{2-\sqrt{6}}{2}< m< \frac{2+\sqrt{6}}{2}\end{matrix}\right.\)
d) Điểm cực trị của hàm số chính là nghiệm của $y'=0$
Với ĐKXĐ như phần c, áp dụng hệ thức Viete:
\(\left\{\begin{matrix} x_1+x_2=\frac{2(m-1)}{m}\\ x_1x_2=\frac{3(m-2)}{m}\end{matrix}\right.\)
Nếu \(x_1+2x_2=1\Rightarrow x_2=1-(x_1+x_2)=\frac{2-m}{m}\)
Mà \(x_1x_2=\frac{3(m-2)}{m}\Rightarrow x_1=-3\)
Khi đó: \(1=x_1+2x_2=-3+\frac{2-m}{m}=-4+\frac{2}{m}\Rightarrow m=\frac{2}{5}\)
Thử lại thấy thỏa mãn đkxđ. Vậy $m=\frac{2}{5}$
Chọn D
Xét hàm số .
Có
.
Ta lại có thì . Do đó thì .
thì . Do đó thì .
Từ đó ta có bảng biến thiên của như sau
Dựa vào bảng biến thiên, ta có
I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.
II. Hàm số đạt cực tiểu tại LÀ MỆNH ĐỀ SAI.
III. Hàm số đạt cực đại tại LÀ MỆNH ĐỀ SAI.
IV. Hàm số đồng biến trên khoảng LÀ MỆNH ĐỀ ĐÚNG.
V. Hàm số nghịch biến trên khoảng LÀ MỆNH ĐỀ SAI.
Vậy có hai mệnh đề đúng.
ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????
a. Hàm số y = -2x + 1 có đồ thị là đường thẳng => Không có cực trị ( điều này hiển nhiên )
b) \(y=f\left(x\right)=\frac{x}{3}\left(x-3\right)^2\)
Có:
\(y'=f'\left(x\right)=\frac{1}{3}.\left(x-3\right)^2+\frac{x}{3}.2.\left(x-3\right)=\frac{1}{3}\left(x-3\right)\left(x-3+2x\right)=\left(x-3\right)\left(x-1\right)\)
\(f''\left(x\right)=x-1+x-3=2x-4\)
+) \(f'\left(x\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
+) Với x =3 có: \(f''\left(3\right)=2.3-4=2>0\)=> y = f ( x ) đạt cực tiểu tại x = 3.
+ Với x = 1 có: \(f''\left(1\right)=2.1-4=-1< 0\)=> y = f ( x ) đạt cực đại tại x =1
Còn có nhiều cách khác nữa: Vẽ đồ thị, vẽ bảng biến thiên,...
hay vải chưởng đè sai mà bn vẫn làm được