K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

\(A=\frac{2^9+1}{2^{10}+1};B=\frac{2^{10}+1}{2^{10}+1}\)

Ta có : ( so sánh tử số )

29 + 1 và 210 + 1

Vì 10 > 9 => 2^10 > 2^9 => 2^10 + 1 > 2^9+1 hay \(A< B\)

24 tháng 9 2017

Ta thấy :

\(B=\frac{2^{10}+1}{2^{10}+1}=1\)

\(A=\frac{2^9+1}{2^{10}+1}< 1=\frac{2^{10}+1}{2^{10}+1}=B\)

\(\Rightarrow A< B\)

24 tháng 9 2017

____Giải____

Ta có: \(A=\frac{2^9+1}{2^{10}+1}\Rightarrow2A=\frac{2^{10}+2}{2^{10}+1}=1+\frac{1}{2^{10}+1}\)

         \(B=\frac{2^{10}+1}{2^{11}+1}\Rightarrow2B=\frac{2^{11}+2}{2^{11}+1}=1+\frac{1}{2^{11}+1}\)

So Sánh 2A và 2B dễ thấy \(\frac{1}{2^{10}+1}>\frac{1}{2^{11}+1}\)

\(\Rightarrow2A>2B\Rightarrow A>B\)

17 tháng 6 2021

mọi người ơi, lm xong bài này trong tối nay hộ mình cái, mình càn gấp lắm rùi

4 tháng 6 2017

Ta thấy \(10^{50}>10^{50}-3\)

\(\Rightarrow B=\frac{10^{50}}{10^{50}-3}>\frac{10^{50}+2}{10^{50}-3+2}=\frac{10^{50}+2}{10^{50}-1}=A\)

Vậy \(A< B\)

Mình chưa học đến đó nên mình tịt

27 tháng 3 2019

trong câu hỏi tương tự

2. So sánh A và B

b) A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{20}\right)\)

    A = \(\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right).....\left(\frac{20}{20}-\frac{1}{20}\right)\)

    A = \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{18}{19}.\frac{19}{20}\)

    A = \(\frac{1.2.3.....19}{2.3.4.....20}\)

    A = \(\frac{1}{20}\)

  Mà \(\frac{1}{20}\)>   \(\frac{1}{21}\)

=> A > B

6 tháng 5 2018

Sửa lại câu 1b, \(\frac{1}{2017.2019}\)

19 tháng 2 2018

mình nhầm câu b:

Áp dụng....

A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)

 =10^10+1/10^11+1=B

Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)

19 tháng 2 2018

a) Với a<b=>a+n/b+n >a/b

    Với a>b=>a+n/b+n<a/b

    Với a=b=>a+n/b+n=a/b

b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:

A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]

    =(10^10)+1/(10^11)+1=B

Vậy A=B

AH
Akai Haruma
Giáo viên
7 tháng 12 2023

Lời giải:
a.

\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)

\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)

b.

\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)

\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)

$\Rightarrow 10A< 10B\Rightarrow A< B$

30 tháng 4 2019

Bài làm

a ) \(A=\frac{9^{99}+1}{9^{100}+1}=\frac{9^{100}+1}{9^{100}+1}-\frac{9}{9^{100}+1}\)

           = \(1-\frac{9}{9^{100}+1}\)

\(B=\frac{10^{98}-1}{10^{99}-1}=\frac{10^{99}-1}{10^{99}-1}-\frac{10}{10^{99}-1}\)

      = \(1-\frac{10}{10^{99}-1}\)

Vì \(\frac{9}{9^{100}+1}>\frac{10}{10^{99}-1}\)

nên \(1-\frac{9}{9^{100}+1}< 1-\frac{10}{10^{99}-1}\)

\(\Rightarrow A< B\)

30 tháng 4 2019

Bài làm

b ) \(A=\frac{5^{10}}{1+5+5^2+.....+5^9}=\frac{1+5+5^2+.....+5^9}{1+5+5^2+.....+5^9}+\frac{1+5+5^2+.....+5^8-5^9.4}{1+5+5^2+.....+5^9}\)

          = \(1+\frac{1+5+5^2+.....+5^8+5^9.4}{1+5+5^2+.....+5^9}=1+5^9.3\)

\(B=\frac{6^{10}}{1+6+6^2+.....+6^9}=\frac{1+6+6^2+.....+6^9}{1+6+6^2+.....+6^9}+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}\)

     = \(1+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}=1+6^9.4\)

Vì \(1+5^9.3< 1+6^9.4\)

nên A < B