Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
B = 3n+3 - 2n+2 + 3n-1 - 2n+1 ( n ∈ N* )
=> B = ( 3n+3 + 3n-1 ) + ( 2n+3 - 2n+1 )
=> B = 3n-1 . ( 34 - 1 ) + 2n+1 . ( 22 + 1 )
=> B = 3n-1 . ( 81 - 1 ) + 2n+1 . ( 4 + 1 )
=> B = 3n-1 . 80 + 2n . 2 . 5
=> B = 3n-1 . 8 . 10 + 2n . 10
=> B = ( 3n-1 . 8 + 2n ) . 10 ⋮ 10 ( do 3n-1 . 8 + 2n ∈ N* với n ∈ N* )
Vậy với mọi số nguyên dương n thì B ⋮ 10
Chứng minh rằng mọi số nguyên dương n thì
B=3^n+3 - 2^n+3 + 3^n+1 - 2^n+1 chia hết cho 10
giúp mik nha
Ta có :
B = 3n+3 - 2n+2 + 3n-1 - 2n+1 ( n ∈ N* )
=> B = ( 3n+3 + 3n-1 ) + ( 2n+3 - 2n+1 )
=> B = 3n-1 . ( 34 - 1 ) + 2n+1 . ( 22 + 1 )
=> B = 3n-1 . ( 81 - 1 ) + 2n+1 . ( 4 + 1 )
=> B = 3n-1 . 80 + 2n . 2 . 5
=> B = 3n-1 . 8 . 10 + 2n . 10
=> B = ( 3n-1 . 8 + 2n ) . 10 ⋮ 10 ( do 3n-1 . 8 + 2n ∈ N* với n ∈ N* )
Vậy với mọi số nguyên dương n thì B ⋮ 10
3n+2 -2n+2 +3n -2n
=3n .32 -2n .22 +3n -22
=3n(9+)-2n(4-1)
Vì 3n .10 ⋮10
=> 3n .10- 2n .3⋮10
=>3n +2 -2n+2 +3n -2n ⋮10
sai
trước 2^n là dấu trừ => trong ngoặc đổi dấu thành 2^n(4+1)
=>2^n-1.10 chia hết cho 10
=>(3^n+2)+(3^n)-(2^n+2)-(2^n)=3^n((3^2)+1)-2^n((2^2)+1)=(3^n)*10-(2^n)*5=(3^n)*10-(2^n-1)*5*2=(3^n)*10-(2^n-1)*10=10*((3^n)-(2^n-1) chia hết cho 10
=>(3^n+2)-(2^n+2)+(3^n)-(2^n)chia hết cho 10
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)⋮10\) ∀n∈N
Vậy ...
3n+2-2n+2+3n-2n
=(3n+2+3n)-(2n+2+2n)
=3n(32+1)-2n(22+1)
=3n.10-2n.5
=3n.10-2n-1.10
=10(3n-2n-1)chia hết cho 10
toán hsg lớp 7:chứng minh rằng với mọi số nguyên dương n thì : 3^n+2 -2^n+2 +3^n-2^n chia hết cho 10
=\(3^n\).\(3^2\)-\(2^n\).\(2^2\)+\(3^n\)-\(2^n\)
=\(^{3^n}\).9 - \(2^n\).4 +\(^{3^n}\)- \(2^n\)
=10 .\(3^n\)-5.\(2^n\)
=10.\(3^n\)-5.2.\(2^{n-1}\)
=10 .(\(3^n\)-\(2^n\) )
=> chia hết cho 10
Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)
\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(dpcm\right)\)
a, 3n + 2 - 2n + 2 + 3n - 2n
= 3n(32 + 1) - 2n(22 + 1)
= 10.3n - 5.2n
= 10.3n - 10.2n - 1
= 10(3n - 2n - 1) chia hết cho 10
b, S = abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 11c
= 111(a + b + c)
= 3.37(a+b+c)
giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn trở lên
=> 3(a + b + c) chia hết cho 37
=> a + b + c chia hết cho 37
vì a;b;c là chữ số => a + b + c lớn nhất = 27
=> vô lí
vậy S không là số chính phương
\(3^{n+2}-2^{n+2}+3^n-2^n\)
= \(3^{n+2}+3^n-2^n-2^{n+2}\)
=\(\left(3^{n+2}+3^n\right)-\left(2^n-2^{n+2}\right)\)
= \(\left(3^n.3^2+3^n\right)-\left(2^n+2^n.2^2\right)\)
= \(3^n.\left(3^2+1\right)-2^n.\left(1+2^2\right)\)
=\(3^n.10-2^{n-1}.5.2\)
= \(3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10
suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10