K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Bạn nên viết đề bằng công thức toán để được hỗ trợ tốt hơn. Viết như thế kia rất khó đọc.

27 tháng 12 2017

a)

\(7\sqrt{12}+\frac{1}{3}\sqrt{27}-\sqrt{75}\)

\(=14\sqrt{3}+\sqrt{3}-5\sqrt{3}\)

\(=10\sqrt{3}\)

b)

\(\left(2\sqrt{20}+\sqrt{125}-3\sqrt{80}\right):5\)

\(=\left(4\sqrt{5}+5\sqrt{5}-12\sqrt{5}\right):5\)

\(=-3\sqrt{5}:5\)

\(=\frac{-3\sqrt{5}}{5}\)

c)

\(3\sqrt{12a}-5\sqrt{3a}+\sqrt{48a}\)

\(=6\sqrt{3a}-5\sqrt{3a}+4\sqrt{3a}\)

\(=5\sqrt{3a}\)

23 tháng 6 2019

\(a,\)\(đkxđ\Leftrightarrow x\ge0\)và \(x-9\ne0\Rightarrow x\ne9\)

\(A=\frac{6\sqrt{x}}{x-9}-\frac{5\sqrt{x}}{3-\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+3}\)

\(\)\(=\frac{6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{5\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{6\sqrt{x}+5x+15\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{18\sqrt{x}+6x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{6\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{6\sqrt{x}}{\sqrt{x}-3}\)

23 tháng 6 2019

\(b,\)Để \(A>2\)\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>2\)

\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>\frac{12\sqrt{x}}{x-3}\)

\(\Rightarrow\frac{6\sqrt{x}-12\sqrt{x}}{\sqrt{x}-3}>0\)

\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}< 0\)

Vì \(\sqrt{x}\ge0;\)\(6>0\)\(\Rightarrow6\sqrt{x}\ge0\)

\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>0\Leftrightarrow\sqrt{x}-3< 0\)

\(\Rightarrow\sqrt{x}< 3\Rightarrow\sqrt{x}< \sqrt{9}\)\(\Leftrightarrow x< 9\)

Mà \(x\ge0\left(đkxđ\right)\)\(\Rightarrow0\le x< 9\)

8 tháng 8 2023

Ta có: \(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}}{4-\sqrt{a}}\)

a) ĐKXĐ: \(a\ne4;a\ne16;a\ge0\)

\(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}-\dfrac{4\sqrt{a}}{\sqrt{a}-4}\)

\(P=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(P=\dfrac{a+3\sqrt{a}+2\sqrt{a}+6-a+2\sqrt{a}+\sqrt{a}-2-4\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(P=\dfrac{4\sqrt{a}+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(P=\dfrac{4\sqrt{a}+4}{a-4}\)

b) Thay x=9 vào P ta có:

\(P=\dfrac{4\cdot\sqrt{9}+4}{9-4}=\dfrac{16}{5}\)

c) \(P< 0\) khi:

\(\dfrac{4\sqrt{x}+4}{a-4}< 0\) 

Mà: \(4\sqrt{x}+4>0\)

\(\Rightarrow a-4< 0\)

\(\Rightarrow a< 4\) 

kết hợp với Đk ta có:

\(0\le x< 4\)

8 tháng 8 2023

8 tháng 8 2023

cái cuối là 4 căn a-4/4-a ý ạ

 

a: \(A=\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}+1}{3-\sqrt{a}}\)

\(=\dfrac{2\sqrt{a}-9}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}+\dfrac{2\sqrt{a}+1}{\sqrt{a}-3}\)

\(=\dfrac{2\sqrt{a}-9-\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)+\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{2\sqrt{a}-9-a+9+2a-3\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{a-\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-3}\)

b: A<1

=>A-1<0

=>\(\dfrac{\sqrt{a}+1}{\sqrt{a}-3}-1< 0\)

=>\(\dfrac{\sqrt{a}+1-\sqrt{a}+3}{\sqrt{a}-3}< 0\)

=>\(\dfrac{4}{\sqrt{a}-3}< 0\)

=>căn a-3<0

=>0<=a<9 và a<>4

c: A là số nguyên

=>\(\sqrt{a}+1⋮\sqrt{a}-3\)

=>căn a-3+4 chia hết cho căn a-3

=>căn a-3 thuộc {1;-1;2;-2;4;-4}

mà a>=0 và a<>4; a<>9

nên a thuộc {16;25;1;49}

8 tháng 11 2021

\(\left(\sqrt{75}+\sqrt{243}-\sqrt{48}\right):\sqrt{3}\)

\(=\sqrt{75}:\sqrt{3}+\sqrt{243}:\sqrt{3}-\sqrt{48}:\sqrt{3}\)

\(=\sqrt{75:3}+\sqrt{243:3}-\sqrt{48:3}\)

\(=\sqrt{25}+\sqrt{81}-\sqrt{16}\)

\(=5+9-4=10\)