K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

2A=\(\frac{2}{1.2.3}\)+\(\frac{2}{2.3.4}\)+...+\(\frac{2}{18.19.20}\)

=1/1.2-1/2.3+1/2.3-1/3.4+...+1/18.19-1/19.20

=1/2-1/19.20

A=1/4-1/19.20.2

vậy A<1/4

18 tháng 5 2017

Ta có: 

A=\(\frac{1}{1.101}+\frac{1}{2.102}+...+\frac{1}{25.125}\)

=\(\frac{1}{100}\left(\frac{100}{1.101}+\frac{100}{2.102}+...+\frac{100}{25.125}\right)\)

=\(\frac{1}{100}\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{25}-\frac{1}{125}\right)\)

=\(\frac{1}{100}\left[\left(1+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{125}\right)\right]\)

B=\(\frac{1}{1.26}+\frac{1}{2.27}+...+\frac{1}{100.125}\)

=\(\frac{1}{25}\left(\frac{25}{1.26}+\frac{25}{2.27}+...+\frac{25}{100.125}\right)\)

=\(\frac{1}{25}\left(1-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+...+\frac{1}{100}-\frac{1}{125}\right)\)

=\(\frac{1}{25}\left[\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{125}\right)\right]\)

=\(\frac{1}{25}\left[\left(1+\frac{1}{2}+...+\frac{1}{25}\right)+\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{100}\right)-\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{100}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{125}\right)\right]\)

\(\frac{1}{25}\left[\left(1+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{125}\right)\right]\)

=> \(\frac{A}{B}\)=\(\frac{\frac{1}{100}\left[\left(1+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{125}\right)\right]}{\frac{1}{25}\left[\left(1+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{125}\right)\right]}\)=\(\frac{1}{\frac{100}{\frac{1}{25}}}\)=\(\frac{1}{100}\cdot25=\frac{25}{100}=\frac{1}{4}\)

15 tháng 5 2015

\(A=\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}=>\frac{1}{2}A=\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{304}\)

                                                                                                   \(=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{16.19}=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{16.19}\right)=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{16}-\frac{1}{19}\right)=\frac{1}{3}.\left(1-\frac{1}{19}\right)=\frac{1}{3}.\frac{18}{19}=\frac{6}{19}\)=> A= \(\frac{6}{19}:\frac{1}{2}=\frac{12}{19}\)

đúng nha

15 tháng 5 2015

A=2/4+2/28+2/70+2/130+2/208+2/304

A=2/1.4+2/4.7+2/7.10+2/10.13+2/13.16+2/16.19

A=2/3.(1-1/4+1/4-1/7+...+1/16-1/19)

A=2/3.(1-1/19)

A=2/3.18/19

A=12/19

Cách này nhanh hơn nhưng vẫn đúng bạn ạ

10 tháng 3 2017

\(D= \dfrac{1}{1.3} + \dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right).\left(2n+1\right)}\),

\(2.D = \dfrac{2}{1.3}+ \dfrac{2}{3.5}+...+\dfrac{2}{\left(2n-1\right).\left(2n+1\right)}\)

\(2.D = 1 - \dfrac{1}{3} + \dfrac{1}{3}- \dfrac{1}{5} +\dfrac{1}{5}- \dfrac{1}{7} + ... + \dfrac{1}{\left(2n-1\right)}-\dfrac{1}{\left(2n+1\right)}\)

\(2.D = 1 - \dfrac{1}{\left(2n+1\right)}\)

\(2.D= \dfrac{2n}{\left(2n+1\right)} \)

Vậy \(D = \dfrac{n}{\left(2n+1\right)}\)

10 tháng 3 2017

\(E=\dfrac{1}{1.3.5}+\dfrac{1}{3.5.7}+\dfrac{1}{5.7.9}+...+\dfrac{1}{\left(2n-1\right).\left(2n+1\right).\left(2n+3\right)}\)

\(\Rightarrow4E=4.\dfrac{1}{1.3.5}+\dfrac{1}{3.5.7}+\dfrac{1}{5.7.9}+...+\dfrac{1}{\left(2n-1\right).\left(2n+1\right).\left(2n+3\right)}\)

\(=\dfrac{4}{1.3.5}+\dfrac{4}{3.5.7}+...+\dfrac{4}{\left(2n-1\right).\left(2n+1\right).\left(2n+3\right)}\)

\(=\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{5.7}-...+\dfrac{1}{\left(2n-1\right).\left(2n+1\right)}-\dfrac{1}{\left(2n+1\right).\left(2n+3\right)}\)

\(=\dfrac{1}{1.3}-\dfrac{1}{\left(2n+1\right).\left(2n+3\right)}\)

\(\Rightarrow E=\dfrac{\dfrac{1}{1.3}-\dfrac{1}{\left(2n+1\right).\left(2n+3\right)}}{4}\)

\(=\dfrac{1}{12}-\dfrac{1}{\left(2n+1\right).\left(2n+3\right).4}\)

24 tháng 3 2022

Ta có: \(\dfrac{1}{4}=\dfrac{10}{40}=\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}\)

Mà \(\dfrac{1}{31}>\dfrac{1}{40}\)

\(\dfrac{1}{32}>\dfrac{1}{40}\)

\(\dfrac{1}{33}>\dfrac{1}{40}\)

\(\dfrac{1}{34}>\dfrac{1}{40}\)

\(\dfrac{1}{35}>\dfrac{1}{40}\)

\(\dfrac{1}{36}>\dfrac{1}{40}\)

\(\dfrac{1}{37}>\dfrac{1}{40}\)

\(\dfrac{1}{38}>\dfrac{1}{40}\)

\(\dfrac{1}{39}>\dfrac{1}{40}\)

\(\Rightarrow\) \(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{39}+\dfrac{1}{40}>\dfrac{10}{40}=\dfrac{1}{4}\)

Vậy \(S>\dfrac{1}{4}\)

16 tháng 6 2016

\(\text{Ta có: }\) \(\frac{1}{4}x+\frac{1}{8}x+\frac{1}{16}x=1\)

\(\Rightarrow\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)x=1\)

\(\Rightarrow\frac{7}{16}x=1\)

\(\Rightarrow x=1:\frac{7}{16}\)

\(\Rightarrow x=\frac{16}{7}\)

16 tháng 6 2016

Tìm x :

a, 1/4 * x + 1/8 * x + 1/16 * x = 1

x * ( 1/4 + 1/8 + 1/16 ) = 1

x * 7/16 = 1

     x = 1 : 7/16

     x = 16/7

b, 1/5 + 1/3 x ( x + 1 ) = 1/4

            1/3 x ( x + 1 ) = 1/4 - 1/5

            1/3 x ( x + 1 ) = 1/20

                      x + 1   = 1/20 : 1/3

                      x + 1 = 3/20

                      x      = 1 - 3/20 

                     x      = 7/20

Tính nhanh :

1/5 x 27 + 1/5 x 33 + 1/5 x 40

= 1/5 x ( 27 + 33 + 40 )

= 1/5 x 100

= 20 

25 tháng 3 2022

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)

\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)

\(B=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{107.111}\)

\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{107}-\dfrac{1}{111}\)

\(=\dfrac{1}{3}-\dfrac{1}{111}=\dfrac{12}{37}\)

 

25 tháng 3 2022

thanks youhehe