K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

Phương trình tương đương:

\(\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)

\(\Leftrightarrow\left(a+3\right)\left(a-5\right)-m=0\)

\(\Leftrightarrow a^2-2a-15-m=0\) (1) với \(a=x^2+4x\)

Để phương trình ẩn x có 4 nghiệm phân biệt thì điều kiện cần của phương trình ẩn a là phải có 2 nghiệm phân biệt.

\(\Delta'_{\left(1\right)}=1+15+m=16+m>0\) \(\Rightarrow m>-16\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2+\sqrt{16+m}\\a=2-\sqrt{16+m}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+4x-2-\sqrt{16+m}=0\left(2\right)\\x^2+4x-2+\sqrt{16+m}=0\left(3\right)\end{matrix}\right.\)

Dễ thấy (2) luôn có 2 nghiệm phân biệt với mọi m, (3) có 2 nghiệm phân biệt khi \(m< 0\). (Xét denta)

Nghiệm của chúng lần lượt là:

\(\left[{}\begin{matrix}x=2+\sqrt{4+\sqrt{16+m}}\\x=2-\sqrt{4+\sqrt{16+m}}\\x=2+\sqrt{4-\sqrt{16+m}}\\x=2-\sqrt{4-\sqrt{16+m}}\end{matrix}\right.\). 4 nghiệm này luôn phân biệt với \(-16< m< 0\)

Lần lượt thay nghiệm vào điều kiện:

\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)

Ta được phương trình vô nghiệm. Vậy không tìm nổi m :V

NV
14 tháng 2 2020

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)\left(x+1\right)\left(x+3\right)=m\)

\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+4x+3\right)=m\)

Đặt \(x^2+4x-5=t\ge-9\)

\(\Rightarrow t\left(t+8\right)-m=0\Leftrightarrow t^2+8t-m=0\) (1)

Để (1) có 2 nghiệm pb thỏa mãn \(t>-9\Rightarrow-16< m< 9\)

Gọi \(x_1;x_2\) là 2 nghiệm của \(x^2+4x-5-t_1=0\) ; \(x_3;x_4\) là 2 nghiệm của \(x^2+4x-5-t_2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=-t_1-5\end{matrix}\right.\)\(\left\{{}\begin{matrix}x_3+x_4=-4\\x_3x_4=-t_2-5\end{matrix}\right.\)

Ta cũng có \(\left\{{}\begin{matrix}t_1+t_2=-8\\t_1t_2=-m\end{matrix}\right.\)

\(\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=-1\Leftrightarrow\frac{-4}{-t_1-5}+\frac{-4}{-t_2-5}=-1\)

\(\Leftrightarrow4\left(t_1+t_2\right)+40=-t_1t_2-5\left(t_1+t_2\right)-25\)

\(\Leftrightarrow t_1t_2+9\left(t_1+t_2\right)+65=0\)

\(\Leftrightarrow-m-72+65=0\Rightarrow m=-7\) (thỏa mãn)

19 tháng 10 2019

PT

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x+3\right)\left(x+5\right)=m\)

\(\Leftrightarrow\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)

\(\Leftrightarrow\left(x^2+4x-1+4\right)\left(x^2+4x-1-4\right)=m\)

\(\Leftrightarrow\left(x^2+4x-1\right)^2-16=m\)

\(\Leftrightarrow\left(x^2+4x-1\right)^2=m+16\) \(\left(DK:m\ge-16\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+4x-1=\sqrt{m+16}\left(1\right)\\x^2+4x-1=-\sqrt{m+16}\left(2\right)\end{cases}}\)

PT(1)

\(\Leftrightarrow x^2+4x-1-\sqrt{m+16}=0\)

Ta co:

\(\Delta^`=2^2-1.\left(-1-\sqrt{m+16}\right)=5+\sqrt{m+16}>0\)

\(\Rightarrow\hept{\begin{cases}x_1=-2+\sqrt{5+\sqrt{m+16}}\\x_2=-2-\sqrt{5+\sqrt{m+16}}\end{cases}}\)

PT(2)

\(\Leftrightarrow x^2+4x-1+\sqrt{m+16}=0\)

Ta lai co:

\(\Delta^`=2^2-1.\left(-1+\sqrt{m+16}\right)=5-\sqrt{m+16}\)

De PT co 4 nghiem phan biet thi PT(1) va PT(2) co 2 nghiem phan bet

Suy ra PT(2) co 2 nghiem phan biet khi 

\(5-\sqrt{m+16}>0\)

\(\Leftrightarrow m< 9\)

\(\Rightarrow\hept{\begin{cases}x_3=-2+\sqrt{5-\sqrt{m+16}}\\x_4=-2-\sqrt{5-\sqrt{m+16}}\end{cases}}\)

Ta lai co:

\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_4}+\frac{1}{x_5}=\frac{x_1+x_2}{x_1x_2}+\frac{x_4+x_5}{x_4x_5}=\frac{4}{1+\sqrt{m+16}}+\frac{4}{1-\sqrt{m+16}}\text{ }=-\frac{8}{15+m}\)\(\left(DK:m\ne-15\right)\)

Ma \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)

\(\Leftrightarrow-\frac{8}{m+15}=-1\)

\(\Leftrightarrow m=-7\)

Vay de PT \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\)co 4 gnhiem phan biet thoa man 

\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)thi m=-7

NV
28 tháng 6 2020

Giả sử tất cả các pt dưới đây đều có nghiệm

\(\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)=m\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(x^2-5x+6\right)=m\)

Đặt \(x^2-5x+4=t\) \(\Rightarrow x^2-5x+4-t=0\) (1)

\(\Rightarrow t\left(t+2\right)=m\Leftrightarrow t^2+2t-m=0\) (2)

Giả sử (2) có 2 nghiệm \(t_1;t_2\)

Theo Viet: \(\left\{{}\begin{matrix}t_1+t_2=-2\\t_1t_2=-m\end{matrix}\right.\)

Thay vào (1): \(\left[{}\begin{matrix}x^2-5x+4-t_1=0\\x^2-5x+4-t_2=0\end{matrix}\right.\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=4-t_1\\x_3+x_4=5\\x_3x_4=4-t_2\end{matrix}\right.\)

\(Q=\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=\frac{5}{4-t_1}+\frac{5}{4-t_2}=\frac{40-5\left(t_1+t_2\right)}{\left(4-t_1\right)\left(4-t_2\right)}\)

\(=\frac{40-5\left(t_1+t_2\right)}{t_1t_2-4\left(t_1+t_2\right)+16}=\frac{40-5.\left(-2\right)}{-m-4.\left(-2\right)+16}=\frac{50}{24-m}\)

10 tháng 2 2019

nhân tung ra rồi dùng  viet

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

29 tháng 5 2017

Ta có: \(\frac{1}{f\left(x\right)}-1=\frac{\left(1-x\right)^3}{x^3}\)

Xét hai số a, b dương sao cho \(a+b=1\)

Ta có: \(\hept{\begin{cases}\frac{1}{f\left(a\right)}-1=\frac{\left(1-a\right)^3}{a^3}\\\frac{1}{f\left(b\right)}-1=\frac{\left(1-b\right)^3}{b^3}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{1-f\left(a\right)}{f\left(a\right)}=\frac{\left(1-a\right)^3}{a^3}\\\frac{1-f\left(b\right)}{f\left(b\right)}=\frac{a^3}{\left(1-a\right)^3}\end{cases}}\)

\(\Rightarrow\frac{1-f\left(a\right)}{f\left(a\right)}.\frac{1-f\left(b\right)}{f\left(b\right)}=1\)

\(\Rightarrow f\left(a\right)+f\left(b\right)=1\)

Áp dụng vào bài toán ta được

\(f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+...+f\left(\frac{2016}{2017}\right)\)

\(=\left[f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)\right]+\left[f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)\right]+...+\left[f\left(\frac{1008}{2017}\right)+f\left(\frac{1009}{2017}\right)\right]\)

\(=1+1+...+1=1008\)

29 tháng 5 2017

Câu 2/

\(\hept{\begin{cases}2x^2-y^2+xy+3y=2\left(1\right)\\x^2-y^2=3\left(2\right)\end{cases}}\)

Ta có:

\(\left(1\right)\Leftrightarrow\left(x+y-1\right)\left(2x-y+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=1-x\\y=2x+2\end{cases}}\)

Thế ngược lại (1) giải tiếp sẽ ra nghiệm.