Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tương đương:
\(\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)
\(\Leftrightarrow\left(a+3\right)\left(a-5\right)-m=0\)
\(\Leftrightarrow a^2-2a-15-m=0\) (1) với \(a=x^2+4x\)
Để phương trình ẩn x có 4 nghiệm phân biệt thì điều kiện cần của phương trình ẩn a là phải có 2 nghiệm phân biệt.
\(\Delta'_{\left(1\right)}=1+15+m=16+m>0\) \(\Rightarrow m>-16\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2+\sqrt{16+m}\\a=2-\sqrt{16+m}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+4x-2-\sqrt{16+m}=0\left(2\right)\\x^2+4x-2+\sqrt{16+m}=0\left(3\right)\end{matrix}\right.\)
Dễ thấy (2) luôn có 2 nghiệm phân biệt với mọi m, (3) có 2 nghiệm phân biệt khi \(m< 0\). (Xét denta)
Nghiệm của chúng lần lượt là:
\(\left[{}\begin{matrix}x=2+\sqrt{4+\sqrt{16+m}}\\x=2-\sqrt{4+\sqrt{16+m}}\\x=2+\sqrt{4-\sqrt{16+m}}\\x=2-\sqrt{4-\sqrt{16+m}}\end{matrix}\right.\). 4 nghiệm này luôn phân biệt với \(-16< m< 0\)
Lần lượt thay nghiệm vào điều kiện:
\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)
Ta được phương trình vô nghiệm. Vậy không tìm nổi m :V
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)\left(x+1\right)\left(x+3\right)=m\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+4x+3\right)=m\)
Đặt \(x^2+4x-5=t\ge-9\)
\(\Rightarrow t\left(t+8\right)-m=0\Leftrightarrow t^2+8t-m=0\) (1)
Để (1) có 2 nghiệm pb thỏa mãn \(t>-9\Rightarrow-16< m< 9\)
Gọi \(x_1;x_2\) là 2 nghiệm của \(x^2+4x-5-t_1=0\) ; \(x_3;x_4\) là 2 nghiệm của \(x^2+4x-5-t_2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=-t_1-5\end{matrix}\right.\) và \(\left\{{}\begin{matrix}x_3+x_4=-4\\x_3x_4=-t_2-5\end{matrix}\right.\)
Ta cũng có \(\left\{{}\begin{matrix}t_1+t_2=-8\\t_1t_2=-m\end{matrix}\right.\)
\(\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=-1\Leftrightarrow\frac{-4}{-t_1-5}+\frac{-4}{-t_2-5}=-1\)
\(\Leftrightarrow4\left(t_1+t_2\right)+40=-t_1t_2-5\left(t_1+t_2\right)-25\)
\(\Leftrightarrow t_1t_2+9\left(t_1+t_2\right)+65=0\)
\(\Leftrightarrow-m-72+65=0\Rightarrow m=-7\) (thỏa mãn)
PT
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x+3\right)\left(x+5\right)=m\)
\(\Leftrightarrow\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)
\(\Leftrightarrow\left(x^2+4x-1+4\right)\left(x^2+4x-1-4\right)=m\)
\(\Leftrightarrow\left(x^2+4x-1\right)^2-16=m\)
\(\Leftrightarrow\left(x^2+4x-1\right)^2=m+16\) \(\left(DK:m\ge-16\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+4x-1=\sqrt{m+16}\left(1\right)\\x^2+4x-1=-\sqrt{m+16}\left(2\right)\end{cases}}\)
PT(1)
\(\Leftrightarrow x^2+4x-1-\sqrt{m+16}=0\)
Ta co:
\(\Delta^`=2^2-1.\left(-1-\sqrt{m+16}\right)=5+\sqrt{m+16}>0\)
\(\Rightarrow\hept{\begin{cases}x_1=-2+\sqrt{5+\sqrt{m+16}}\\x_2=-2-\sqrt{5+\sqrt{m+16}}\end{cases}}\)
PT(2)
\(\Leftrightarrow x^2+4x-1+\sqrt{m+16}=0\)
Ta lai co:
\(\Delta^`=2^2-1.\left(-1+\sqrt{m+16}\right)=5-\sqrt{m+16}\)
De PT co 4 nghiem phan biet thi PT(1) va PT(2) co 2 nghiem phan bet
Suy ra PT(2) co 2 nghiem phan biet khi
\(5-\sqrt{m+16}>0\)
\(\Leftrightarrow m< 9\)
\(\Rightarrow\hept{\begin{cases}x_3=-2+\sqrt{5-\sqrt{m+16}}\\x_4=-2-\sqrt{5-\sqrt{m+16}}\end{cases}}\)
Ta lai co:
\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_4}+\frac{1}{x_5}=\frac{x_1+x_2}{x_1x_2}+\frac{x_4+x_5}{x_4x_5}=\frac{4}{1+\sqrt{m+16}}+\frac{4}{1-\sqrt{m+16}}\text{ }=-\frac{8}{15+m}\)\(\left(DK:m\ne-15\right)\)
Ma \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)
\(\Leftrightarrow-\frac{8}{m+15}=-1\)
\(\Leftrightarrow m=-7\)
Vay de PT \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\)co 4 gnhiem phan biet thoa man
\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)thi m=-7
Giả sử tất cả các pt dưới đây đều có nghiệm
\(\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)=m\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(x^2-5x+6\right)=m\)
Đặt \(x^2-5x+4=t\) \(\Rightarrow x^2-5x+4-t=0\) (1)
\(\Rightarrow t\left(t+2\right)=m\Leftrightarrow t^2+2t-m=0\) (2)
Giả sử (2) có 2 nghiệm \(t_1;t_2\)
Theo Viet: \(\left\{{}\begin{matrix}t_1+t_2=-2\\t_1t_2=-m\end{matrix}\right.\)
Thay vào (1): \(\left[{}\begin{matrix}x^2-5x+4-t_1=0\\x^2-5x+4-t_2=0\end{matrix}\right.\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=4-t_1\\x_3+x_4=5\\x_3x_4=4-t_2\end{matrix}\right.\)
\(Q=\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=\frac{5}{4-t_1}+\frac{5}{4-t_2}=\frac{40-5\left(t_1+t_2\right)}{\left(4-t_1\right)\left(4-t_2\right)}\)
\(=\frac{40-5\left(t_1+t_2\right)}{t_1t_2-4\left(t_1+t_2\right)+16}=\frac{40-5.\left(-2\right)}{-m-4.\left(-2\right)+16}=\frac{50}{24-m}\)
Ta có: \(\frac{1}{f\left(x\right)}-1=\frac{\left(1-x\right)^3}{x^3}\)
Xét hai số a, b dương sao cho \(a+b=1\)
Ta có: \(\hept{\begin{cases}\frac{1}{f\left(a\right)}-1=\frac{\left(1-a\right)^3}{a^3}\\\frac{1}{f\left(b\right)}-1=\frac{\left(1-b\right)^3}{b^3}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1-f\left(a\right)}{f\left(a\right)}=\frac{\left(1-a\right)^3}{a^3}\\\frac{1-f\left(b\right)}{f\left(b\right)}=\frac{a^3}{\left(1-a\right)^3}\end{cases}}\)
\(\Rightarrow\frac{1-f\left(a\right)}{f\left(a\right)}.\frac{1-f\left(b\right)}{f\left(b\right)}=1\)
\(\Rightarrow f\left(a\right)+f\left(b\right)=1\)
Áp dụng vào bài toán ta được
\(f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+...+f\left(\frac{2016}{2017}\right)\)
\(=\left[f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)\right]+\left[f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)\right]+...+\left[f\left(\frac{1008}{2017}\right)+f\left(\frac{1009}{2017}\right)\right]\)
\(=1+1+...+1=1008\)
Câu 2/
\(\hept{\begin{cases}2x^2-y^2+xy+3y=2\left(1\right)\\x^2-y^2=3\left(2\right)\end{cases}}\)
Ta có:
\(\left(1\right)\Leftrightarrow\left(x+y-1\right)\left(2x-y+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=1-x\\y=2x+2\end{cases}}\)
Thế ngược lại (1) giải tiếp sẽ ra nghiệm.