Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
b: Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot4\cdot6=2\cdot6=12\left(cm^2\right)\)
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
=>\(AD=DB=\dfrac{AB}{2}=2\left(cm\right)\)
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
=>\(AE=EC=\dfrac{AC}{2}=3\left(cm\right)\)
Diện tích hình chữ nhật ADME là:
\(S_{ADME}=AD\cdot AE=2\cdot3=6\left(cm^2\right)\)
c: Để hình chữ nhật ADME trở thành hình vuông thì AD=AE
mà AD=AB/2; AE=AC/2
nên AB=AC
a) \(\Delta ABC\) vuông tại A (gt).
\(\Rightarrow S_{\Delta ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}6.8=24\left(cm^2\right).\)
b) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2.\Rightarrow BC^2=6^2+8^2.\Leftrightarrow BC^2=36+64=100.\)
\(\Rightarrow BC=10\left(cm\right).\)
c) Ta có: \(S_{\Delta ABC}=\dfrac{1}{2}AH.BC.\)
\(S_{\Delta ABC}=\dfrac{1}{2}AB.AC.\)
\(\Rightarrow\dfrac{1}{2}AH.BC=\dfrac{1}{2}AB.AC.\)
\(\Rightarrow\dfrac{1}{2}AH.10=24.\Leftrightarrow AH=4,8\left(cm\right).\)
a)Diện tích tam giác vuông ABC là:
S=1/2* AB *AC = 1/2 * 6 * 8= 24 (cm2)
b)Độ dài cạnh BC là:
theo định lý pytago về tam giác vuông, ta có
BC2= AB2+AC2= 62 + 82 = 100 cm => BC = \(\sqrt{100}\) = 10cm
c) Độ dài đường cao AH
AC2= BC*HC => HC = \(\dfrac{AC^2}{BC}\) = 6,4 cm
BH = BC - HC = 10 - 6,4 = 3,6 cm
AH2 = BH*HC = 6,4 * 3,6 = \(\dfrac{576}{25}\) => AH = \(\sqrt{\dfrac{576}{25}}=4,8cm\)
a,
\(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{6.8}{2}=24cm^2\)
b. \(BC^2=AB^2+AC^2\Rightarrow BC=10cm\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=4,8cm
a)SABC=6.8=48(cm2)
b)Áp dụng định lý Py-ta-go trong tam giác vuông ABC có: BC=10cm
c)AB.AC=BC.AH =>AH=(AB.AC)/BC=4,8cm
a: AC=8cm
b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
c: AH=4,8cm
bn ơi câu a bn giải thích ra luôn giùm mik ik
câu b,c nx
a) công thức . \(\frac{đáy.chiềucao}{2}\)
b) Áp dụng định lý pitago ta có
\(BC^2=AB^2+AC^2\)
=> AC^2=\(BC^2-AB^2=^{10^2}-6^2=64\)
=>\(AC=8\)
A)Xét tam giác ABC vuông tại A(gt),có:
SABC=(AB.AC)/2
B)Xét tam giác ABC vuông tại A(gt),có:
AB^2+AC^2=BC^2(ĐL Pytago)
Thay số:36+AC^×=100
<=>AC=căn64=8cm
Ta có:SABC=(AB.AC)/2
Thay số:SABC=24cm^2
Mà SABC=(AH.BC)/2
=>(AH.BC)/2=24
Thay số:AH=24.2:10=4,8cm
SABC=24CM^2(cmt)
\(a,S=\dfrac{1}{2}ah\) (a là cạnh đáy, h là chiều cao)
Với tam giác vuông: \(S=\dfrac{1}{2}bc=\dfrac{1}{2}ah\) (b,c là độ dài 2 cạnh góc vuông)
\(b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=300\left(cm^2\right)\)
a) \(S=\dfrac{a.h}{2}\)
b) diện tích tam giác là:\(\dfrac{AB.AC}{2}=\dfrac{6.100}{2}=300\left(cm^2\right)\)