K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:
$\Delta'=(m+1)^2-(4m-m^2)=2m^2-2m+1=2(m-0,5)^2+0,5>0$ với mọi $m$ nên pt luôn có 2 nghiệm pb với mọi $m$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=4m-m^2\end{matrix}\right.\)

Khi đó:
\(P=|x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{(x_1+x_2)^2-4x_1x_2}\)

\(=\sqrt{4(m+1)^2-4(4m-m^2)}=\sqrt{4(2m^2-2m+1)}\)

\(=2\sqrt{2(m-0,5)^2+0,5}\geq 2\sqrt{0,5}\)

Vậy $P_{\min}=2\sqrt{0,5}=\sqrt{2}$. Giá trị này đạt tại $m=0,5$

26 tháng 8 2021

Theo Vi-et : \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1.x_2=4m-m^2\end{matrix}\right.\)

\(\Rightarrow\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1.x_2\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=\left(2m+2\right)^2-4.\left(4m-m^2\right)=4m^2+8m+4-16m+4m^2\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=8m^2-8m+4=8\left(m^2+m+\dfrac{1}{4}\right)+2=8\left(m+\dfrac{1}{2}\right)^2+2\ge2\)

\(\Leftrightarrow\left|x_1-x_2\right|\ge\sqrt{2}\)