Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Ta có : \(P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)
Dấu "=" xảy ra khi x = 13/2
Vậy Max P(x) = 8217/4 tại x = 13/2
2/ Ta có : \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)
3/ \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow ab+bc+ac=-\frac{1}{2}\) \(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)(vì a+b+c=0)
Ta có : \(a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}\)
Bài 1:
(a-b)3+(a+b)3
=(a-b+a+b)[(a-b)2-(a-b)(a+b)+(a+b)2]
=2a(a2-2ab+b2-a2+b2+a2+2ab+b2)
=2a(a2+3b2)
Đpcm
Bài 2:
a) ( 2x - 1 )3-4x2(2x-3)=5
<=>8x3-12x2+6x-1-8x3+12x2=5
<=>6x-1=5
<=>6x=6
<=>x=1
b) (x + 4)3 - x2( x+12) =16
<=>x3+12x2+48x+64-x3-12x2=16
<=>48x+64=16
<=>48x=-48
<=>x=-1
\(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)=8x^3+27-8x^3+2=29\)
\(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)=64x^3-48x^2+12x-1-\left(64x^3+12x-48x^2-9\right)=8\)
\(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)
\(=2\left(x^2-xy+y^2\right)-3x^2-3y^2\)
\(=-2xy-x^2-y^2\)
\(=-\left(x^2+2xy+y^2\right)=-\left(x+y\right)^2=-1^2=-1\)
\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)\)
\(=x^3+3x^2+3x+1-\left(x^3-3x^2+3x-1\right)-6\left(x^2-1\right)\)
\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6=8\)
Chúc bạn học tốt.
a)\(\left(2y-1\right)^3-2y\left(2y-3\right)^2-6y\left(2y-2\right)\)
\(=8y^3-12y^2+6y-1-2y\left(4y^2-12y+9\right)-12y^2+12y\)
\(=8y^3-12y^2+6y-1-8y^3+24y^2-18y-12y^2+12y\)
=-1
Vậy....(đpcm)
Các câu sau tương tự
Bài 2 :
a ) \(\left(7y-2\right)^2-\left(7y+1\right)\left(7y-1\right)\)
\(=49y^2-28y+4-49y^2-1\)
\(=-28y+5\)