K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3

b vì a>3 => a+2>3+2  =>a+2>5

c  vì m>n =>m-n>n-n=>m-n>0

đ vì m-n=0 =>m-n+n>0+n=>m>n

e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)

  vì -4>-5 => m-4>m-5 (2)

từ (1) và (2) =>m-5<n-4

23 tháng 6 2015

ta có a=5k+3

Nên a2= (5k+3)2=25k2+30k+9=25k2+30k+5+4=5(5k2+6k+1)+4 chia cho 5 dư 4 (dpcm)

11 tháng 6 2020

Xét m,n có 1 số chia hết cho 5 thì A \(⋮\)5

Xét m,n  đều không chia hết cho 5

Ta có : với a \(⋮̸\)5 thì a có dạng : \(5k\pm1;5k\pm2\)

\(\Rightarrow a^4=\left(5k\pm1\right)^4=B\left(5\right)+1\)chia 5 dư 1

\(a^4=\left(5k\pm2\right)^4=B\left(5\right)+16=B\left(5\right)+1\)chia 5 dư 1

từ đó suy ra \(m^4\)chia 5 dư 1 ; \(n^4\)chia 5 dư 1

\(\Rightarrow m^4-n^4\)chia hết cho 5

\(\Rightarrow A⋮5\)

Vậy ....

11 tháng 6 2020

Ta có: \(A=mn\left(m^4-n^4\right)=mn\left(m^4-1\right)-mn\left(n^4-1\right)\)

Xét \(a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a^2-1\right)\left(a^2-4\right)+5a\left(a^2-1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a^2-1\right)⋮5\)với mọi a nguyên bất kì

=> \(nm\left(m^4-1\right)=n\left[m\left(m^4-1\right)\right]⋮5\)với m nguyên 

\(nm\left(m^4-1\right)=m\left[n\left(n^4-1\right)\right]⋮5\)với n nguyên 

=> \(A=mn\left(m^4-n^4\right)=mn\left(m^4-1\right)-mn\left(n^4-1\right)\) chia hết cho 5.

Bài 2:

a: \(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

b: Vì -2<x<2 nên x+2>0 và x-2<0

=>(x-2)(x+2)<0

=>A<0

28 tháng 10 2018

1. \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(abc\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

2. \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

3.Còn có a + b + c = 0 nữa mà bn.

\(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)

+ \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\ \left(c-a\right)^2=0\end{matrix}\right.\)

\(\Rightarrow a=b=c\)

28 tháng 10 2018

làm đúng mà ko hiểu

Bài 1: 

b: 

x=9 nên x+1=10

\(M=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...-x\left(x+1\right)+x+1\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^2-x+x+1\)

=1

c: \(N=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+2^{10}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\left(1+2^5+2^{10}\right)⋮31\)