K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2017

(a3+b3)2=(a2+b2)3

<=> a6+b6+2a3b3=a6+b6+3a2b2(a2+b2)

<=> 2a3b3=3a2b2(a2+b2)

<=> 2ab = 3(a2+b2)

<=> 3(a2+b2)-2ab=0

<=> 2(a2+b2)+(a-b)2=0

<=> a=b=0, mâu thuẫn với đề

=> ...

13 tháng 7 2018

\(a+\frac{1}{b}=1\)\(\Leftrightarrow\left(a+\frac{1}{b}\right)^2=1\)\(\Leftrightarrow a^2+\frac{1}{b^2}+\frac{2a}{b}=1\)\(\Leftrightarrow\frac{a}{b}=-1\)

\(a^2+\frac{1}{b^2}=3\)\(\Leftrightarrow\left(a^2+\frac{1}{b^2}\right)^2=9\)\(\Leftrightarrow a^4+\frac{1}{b^4}+\frac{2.a^2}{b^2}=9\)\(\Leftrightarrow a^4+\frac{1}{b^4}=7\)

\(N=\frac{a^4b^4+a^2b^2+1}{b^4}=a^4+\frac{a^2}{b^2}+\frac{1}{b^4}\)

13 tháng 7 2018

\(\text{Thanks you verry much !!}\)

21 tháng 8 2018

\(ab+bc+ca=0\)

=>   \(\frac{ab+bc+ca}{abc}=0\)

=>  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Đặt:  \(\frac{1}{a}=x;\)\(\frac{1}{b}=y;\)\(\frac{1}{c}=z\)

Ta có:   \(x+y+z=0\)

=>  \(x^3+y^3+z^3=3xyz\)  (tự c/m, ko c/m đc ib)

hay  \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

\(B=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc.\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

     \(=abc.\frac{3}{abc}=3\)

23 tháng 8 2018

thanks