K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2021

a) Vì \(\hept{\begin{cases}\left|5-4x\right|\ge0\\\left|7y-3\right|\ge0\end{cases}}\)nên dấu "=" xảy ra <=> x = 5/4 ; y = 3/7

b) Vì \(\hept{\begin{cases}\left|x-3y-1\right|\ge0\\\left|y-4\right|\ge0\end{cases}}\)nên dấu "=" xảy ra <=> x = 13 ; y = 4

a)do |5-4x|+|7y-3|=0,mà|5-4x| và|7y-3| đều lớn hơn hoặc = 0

suy ra 5-4x=7y-3=0 thì biểu thức mới thỏa mãn

(do mọi số trong  dấu GTTĐ đều lớn hơn hoặc bằng 0)

tự giải nốt nhé

21 tháng 7 2021

(x+1)+(x+2)+(x+3)=4x

x+1+x+2+x+3=4x

(x+x+x)+(1+2+3)=4x

x*3+6=4x

6=1*x(bớt cả hai vế đi 3*x)

x=6/1(Tìm thừa số)

x=6

17 tháng 7 2021

Mik sẽ k cho bạn đó mik viết nhầm

14 tháng 7 2021

a, 1,5 +|2x - 2/3| = 3/2

            |2x - 2/3| = 3/2 - 1,5 

            |2x - 2/3| = 0

<=> 2x - 2/3 = 0 

<=> 2x = 0 + 2/3

<=> 2x = 2/3

<=> x = 2/3 : 2

<=> x = 1/3 

Vậy x = 1/3

14 tháng 7 2021

b, 3/4 - |1/4 - x| = 5/8

            |1/4 - x| = 3/4 - 5/8

            |1/4 - x| = 1/8

<=> 1/4 - x = 1/8

       1/4 - x = /1/8

<=> x = 1/4 - 1/8

       x = 1/4 - ( -1/8)

<=> x = 1/8

       x = 3/8

Vậy x thuộc { 1/8 ; 3/8 }

16 tháng 2 2021

a) Có \(\left|x-3y\right|^5\ge0\);\(\left|y+4\right|\ge0\)

\(\rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\)

mà \(\left|x-3y\right|^5+\left|y+4\right|=0\)

\(\rightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\)

\(\rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)

\(\rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)

 

b) Tương tự câu a, ta có:

\(\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)

 

c. Tương tự, ta có:

\(\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\\left|y+2\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=-2\end{matrix}\right.\)

16 tháng 2 2021

a. \(\left|x-3y\right|^5\ge0,\left|y+4\right|\ge0\Rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\) \(\Rightarrow VT\ge VP\)

Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\) Vậy...

b. \(\left|x-y-5\right|\ge0,\left(y-3\right)^4\ge0\Rightarrow\left|x-y-5\right|+\left(y-3\right)^4\ge0\) \(\Rightarrow VT\ge VP\)

Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\) Vậy ...

c. \(\left|x+3y-1\right|\ge0,3\cdot\left|y+2\right|\ge0\Rightarrow\left|x+3y-1\right|+3\left|y+2\right|\ge0\) \(\Rightarrow VT\ge VP\) Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\3\left|y+2\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-\left(-2\right)\cdot3=7\\y=-2\end{matrix}\right.\) Vậy...

13 tháng 7 2021

\(\frac{3}{13}.\frac{5}{9}+\frac{1}{6}:\frac{13}{3}+1\)

\(=\frac{3}{13}.\frac{5}{9}+\frac{1}{6}.\frac{3}{13}+1\)

\(=\frac{3}{13}.\left(\frac{5}{9}+\frac{1}{6}\right)+1\)

\(=\frac{3}{13}.\left(\frac{30+9}{54}\right)+1\)

\(=\frac{3}{13}.\frac{39}{54}+1\)

\(=\frac{1}{6}+1\)

\(=\frac{7}{6}\)

\(\frac{5}{6}-\frac{7}{9}.\frac{2}{13}-\frac{7}{9}.\frac{11}{13}+\frac{-2}{9}\)

\(=\frac{5}{6}-\frac{7}{9}.\left(\frac{2}{13}-\frac{11}{13}\right)+\frac{-2}{9}\)

\(=\frac{5}{6}-\frac{7}{9}.\frac{-9}{13}-\frac{2}{9}\)

\(=\frac{5}{6}-\frac{-7}{13}-\frac{2}{9}\)

\(\frac{5}{6}-\frac{7}{9}.\frac{2}{13}-\frac{7}{9}.\frac{11}{13}+\frac{-2}{9}\)

\(=\frac{5}{6}-\frac{7}{9}.\left(\frac{2}{13}-\frac{11}{13}\right)+\frac{-2}{9}\)

\(=\frac{5}{6}-\frac{7}{9}.\frac{-9}{13}-\frac{2}{9}\)

\(=\frac{5}{6}-\frac{-7}{13}-\frac{2}{9}\)

\(=\frac{5}{6}+\frac{7}{13}-\frac{2}{9}\)

\(=\frac{195+126-52}{234}\)

\(=\frac{269}{234}\)

13 tháng 7 2021

\(\frac{3}{13}.\frac{5}{9}+\frac{1}{6}:\frac{13}{3}+1\)

\(=\frac{3}{13}.\frac{5}{9}+\frac{1}{6}.\frac{3}{13}+1\)

\(=\frac{3}{13}.\left(\frac{5}{9}+\frac{1}{6}\right)+1\)

\(=\frac{3}{13}.\left(\frac{30+9}{54}\right)+1\)

\(=\frac{3}{13}.\frac{39}{54}+1\)

\(=\frac{1}{6}+1=\frac{1}{6}+\frac{6}{6}\)

\(=\frac{7}{6}\)

\(\frac{-7}{9}.\frac{2}{13}-\frac{7}{9}.\frac{11}{13}+\frac{-2}{9}\)

\(=\frac{-7}{9}.\frac{2}{13}+\frac{-7}{9}.\frac{11}{13}+\frac{-2}{9}\) 

\(=\frac{-7}{9}.\left(\frac{2}{13}+\frac{11}{13}\right)+\frac{-2}{9}\)

\(=\frac{-7}{9}.1+\frac{-2}{9}\)

\(=\frac{-7}{9}+\frac{-2}{9}\)

\(=\frac{-9}{9}=-1\)

\(\frac{2}{13}.\frac{2}{7}.5\)

\(=\frac{2.2.5}{13.7}\)

\(=\frac{20}{91}\)

\(\frac{1}{5}.\frac{11}{12}.\frac{21}{6}\)

\(=\frac{11.21}{5.12.6}\)

\(=\frac{231}{360}=\frac{77}{120}\)

Bài 1: 

b) Ta có: \(D=\dfrac{-5}{10}\cdot\dfrac{-4}{10}\cdot\dfrac{-3}{10}\cdot...\cdot\dfrac{3}{10}\cdot\dfrac{4}{10}\cdot\dfrac{5}{10}\)

\(=\dfrac{-5}{10}\cdot\dfrac{-4}{10}\cdot\dfrac{-3}{10}\cdot...\cdot0\cdot...\cdot\dfrac{3}{10}\cdot\dfrac{4}{10}\cdot\dfrac{5}{10}\)

=0

26 tháng 12 2021

0,2-0,375+5/11/-0,3+9/16-15/22

1 tháng 8 2021

Ta có \(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{10}{-2}=-5\)

\(\Rightarrow x=3.\left(-5\right)=-15;y=\left(-5\right).5=-25\)

Vậy x = -15 ; y = -25

2 tháng 8 2021

Trả lời:

\(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{10}{-2}=-5\)

\(\Rightarrow\hept{\begin{cases}x=-15\\y=-25\end{cases}}\)

Vậy x = - 15; y = - 25