K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2021

a/

\(3x=4z\Rightarrow x=\frac{4z}{3};2y-3z=4z\Rightarrow y=\frac{7z}{2}\)

\(\Rightarrow x+y-z=\frac{4z}{3}+\frac{7z}{2}-z=46\)

Giải r tìm z từ đó tìm được x và y

b/ Tương tự câu a

5 tháng 10 2018

Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^

Có gì không hiểu bạn ib nha ^^

1. \(2x=3y-2x\left(1\right)\)\(x+y=14\)

\(\left(1\right)\Leftrightarrow4x=3y\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)

Theo tính chất dãy tỉ số bằng nhau, có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)

Bạn tự kết luận ^^

5 tháng 10 2018

sao nhieu bt the ban

3: 10x=6y=5z

\(\Leftrightarrow\dfrac{10x}{30}=\dfrac{6y}{30}=\dfrac{5z}{30}\)

hay x/3=y/5=z/6

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{24}{2}=12\)

Do đó: x=36; y=60; z=72

4: Ta có: 9x=3y=2z

nên \(\dfrac{9x}{18}=\dfrac{3y}{18}=\dfrac{2z}{18}\)

hay x/2=y/6=z/9

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{6}=\dfrac{z}{9}=\dfrac{x-y+z}{2-6+9}=\dfrac{50}{5}=10\)

Do đó: x=20; y=60; z=90

24 tháng 7 2019

+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

16 tháng 1 2016

Bạn áp dụng tính chất dãy tỉ số bằng nhau đi :)

7 tháng 7 2016

Đơn giản mà bạn

10 tháng 7 2016

a) 2x=3y-2x

=> 2x+2x=3y

=> 4x=3y

=> \(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)

=>x=2x3=6

y=4x2=8

6 tháng 8 2018

undefined

undefined

undefined

6 tháng 8 2018

a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)\(2x-y+3z=28\)

Theo tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x}{5}=\dfrac{2x-y+3z}{4-3+15}=\dfrac{28}{16}=1,75\)

\(\Rightarrow\dfrac{x}{2}=1,75\Rightarrow x=3,5\)

\(\dfrac{y}{3}=1,75\Rightarrow y=5,25\)

\(\dfrac{z}{5}=1,75\Rightarrow z=8,75\)

24 tháng 7 2019

\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)

\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)

24 tháng 7 2019

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)

áp dụng tính chất dãy tỉ số bằng nhau  ta có

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)