Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\dfrac{1}{27}x^3+8y^3\)
b: \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=x^6-\dfrac{1}{27}\)
c: \(\left(y-5\right)\left(y^2+5y+25\right)=y^3-125\)
1)(x2-4x+16)(x+4)-x(x+1)(x+2)+3x2=0
\(\Rightarrow\)(x3+64)-x(x2+2x+x+2)+3x2=0
\(\Rightarrow\)x3+64-x3-2x2-x2-2x+3x2=0
\(\Rightarrow\)-2x+64=0
\(\Rightarrow\)-2x=-64
\(\Rightarrow\)x=\(\dfrac{-64}{-2}\)
\(\Rightarrow x=32\)
2)(8x+2)(1-3x)+(6x-1)(4x-10)=-50
\(\Rightarrow\)8x-24x2+2-6x+24x2-60x-4x+10=50
\(\Rightarrow\)-62x+12=50
\(\Rightarrow\)-62x=50-12
\(\Rightarrow\)-62x=38
\(\Rightarrow\)x=\(-\dfrac{38}{62}=-\dfrac{19}{31}\)
a: \(=\dfrac{5}{3}x^2-x+\dfrac{1}{3}\)
b: \(=-5y-9+xy\)
\(\left(x+4\right)\left(x^2-4x+16\right)=x^3+64\)
\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)
\(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=x^6-\dfrac{1}{27}\)
\(\)a: \(\left(x-2y\right)^3\)
\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=x^3-6x^2y+12xy^2-8y^3\)
b: \(\left(2x+y\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)
\(=8x^3+12x^2y+6xy^2+y^3\)
c: \(\left(\dfrac{1}{3}x-1\right)^3=\left(\dfrac{1}{3}x\right)^3-3\cdot\left(\dfrac{1}{3}x\right)^2\cdot1+3\cdot\dfrac{1}{3}x\cdot1^2-1^3\)
\(=\dfrac{1}{27}x^3-\dfrac{1}{3}x^2+x-1\)
d: \(\left(x+\dfrac{1}{3}y\right)^3\)
\(=x^3+3\cdot x^2\cdot\dfrac{1}{3}y+3\cdot x\cdot\left(\dfrac{1}{3}y\right)^2+\left(\dfrac{1}{3}y\right)^3\)
\(=x^3+x^2y+\dfrac{1}{3}xy^2+\dfrac{1}{27}y^3\)
e: (2x-3y)3
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot3y+3\cdot2x\cdot\left(3y\right)^2-\left(3y\right)^3\)
\(=8x^3-36x^2y+54xy^2-27y^3\)
f: \(\left(x^2-2y\right)^3\)
\(=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot2y+3\cdot x^2\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=x^6-6x^4y+12x^2y^2-8y^3\)
g: \(\left(\dfrac{1}{2}x-y\right)^3=\left(\dfrac{1}{2}x\right)^3-3\cdot\left(\dfrac{1}{2}x\right)^2\cdot y+3\cdot\dfrac{1}{2}x\cdot y^2-y^3\)
\(=\dfrac{1}{8}x^3-\dfrac{3}{4}x^2y+\dfrac{3}{2}xy^2-y^3\)
a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)
\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)
\(=\dfrac{2}{27}\)
c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
2.
a. 3x(12x - 4) - 9x(4x - 3) = 30
<=> 36x2 - 12x - 36x2 + 27x = 30
<=> 36x2 - 36x2 - 12x + 27x = 30
<=> 15x = 30
<=> x = 2
b. x(5 - 2x) + 2x(x - 1) = 15
<=> 5x - 2x2 + 2x2 - 2x = 15
<=> -2x2 + 2x2 + 5x - 2x = 15
<=> 3x = 15
<=> x = 5
a) x2 ( 5x3 - x - 1212)= 5x5-x3-1212x
b) ( 3xy - x2 + y ) 2323x2y= 6969x3y2- 2323x4y+ 2323x2y2
c) x2 ( 4x3 - 5xy + 2x ) ( -1212 xy )=(4x5-5x3y+2x3).(-1212xy)
= -4848x6y +6060x4y2-2424x4y
2/ Tìm x, biết
a) 3x( 12x - 4 ) - 9x (4x - 3 ) = 30
=> 36x2-12x-36x2+27x=30
=> -12x +27x=30
=> 15x = 30
=>x =2
b ) x( 5 - 2x ) + 2x ( x - 1 )= 15
=> 5x-2x2+2x2-2x=15
=> 3x=15
=>x=5
1) \(\left(\dfrac{1}{2}x+3\right)\left(x^2-4x-6\right)\)
\(=\dfrac{1}{2}x^3-2x^2-3x+3x^2-12x-18\)
\(=\dfrac{1}{2}x^3+x^2-15x-18\)
2) \(\left(6x^2-9x+15\right)\left(\dfrac{2}{3}x+1\right)\)
\(=4x^3+6x^2-6x^2-9x+10x+15\)
\(=4x^3+x+15\)
3) Ta có: \(\left(3x^2-x+5\right)\left(x^3+5x-1\right)\)
\(=3x^5+15x^2-3x^2-x^4-5x^2+x+5x^3+25x-5\)
\(=3x^5-x^4+5x^3+10x^2+26x-5\)
4) Ta có: \(\left(x-1\right)\left(x+1\right)\left(x-2\right)\)
\(=\left(x^2-1\right)\left(x-2\right)\)
\(=x^3-2x^2-x+2\)
a) \(\left(2x+3y\right)^2=\left(2x\right)^2+2\cdot2x\cdot3y+\left(3y\right)^2=4x^2+12xy+9y^2\)
b) \(\left(x+\dfrac{1}{4}\right)^2=x^2+2\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2=x^2+\dfrac{1}{2}x+\dfrac{1}{16}\)
c) \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2=x^4-\dfrac{4}{25}y^2\)
d) \(\left(2x+y^2\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y^2+3\cdot2x\cdot\left(y^2\right)^2+\left(y^2\right)^3=8x^3+12x^2y^2+6xy^4+y^6\)
e) \(\left(3x^2-2y\right)^2=\left(3x^2\right)^2-2\cdot3x^2\cdot2y+\left(2y\right)^2=9x^4-12x^2y+4y^2\)
f) \(\left(x+4\right)\left(x^2-4x+16\right)=x^3+4^3=x^3+64\)
g) \(\left(x^2-\dfrac{1}{3}\right)\cdot\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3=x^6-\dfrac{1}{27}\)