Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(x^2-6x+9-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-y-3\right)\left(x+y-3\right)\)
b: Ta có: \(x^3+4x^2+4x\)
\(=x\left(x^2+4x+4\right)\)
\(=x\left(x+2\right)^2\)
c: Ta có: \(4xy-4x^2-y^2+9\)
\(=-\left(4x^2-4xy+y^2-9\right)\)
\(=-\left(2x-y-3\right)\left(2x-y+3\right)\)
\(\frac{\left(x-3\right)}{x^2+4x+9}+2+\frac{x^2+4x+9}{x-3}=0\)
\(x^2+4x+9=\left(x+2\right)^2+5\ge5\)
x>3 hiển nhiên vô nghiệm
xét x<3
\(\frac{!\left(x-3\right)!}{x^2+4x+9}+\frac{x^2+4x+9}{!x-3!}\ge2\)
vậy pt chỉ nghiệm
khi \(\frac{!\left(x-3\right)!}{x^2+4x+9}=\frac{x^2+4x+9}{!x-3!}\Leftrightarrow x^2+4x+9=!x-3!\)
\(\Leftrightarrow x^2+5x+6=0\Rightarrow\)
25-24=1
=>
x=-3 loại
x=-2 nhận
Đk:....
Đặt \(\hept{\begin{cases}a=x-3\\b=x^2+4x+9\end{cases}}\) pt trở thành
\(\frac{a}{b}+2+\frac{b}{a}=0\)\(\Leftrightarrow\frac{a^2}{ab}+\frac{2ab}{ab}+\frac{b^2}{ab}=0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2}{ab}=0\)\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a=-b\)\(\Leftrightarrow x-3=-\left(x^2+4x+9\right)\)
\(\Leftrightarrow x-3=-x^2-4x-9\)\(\Leftrightarrow x^2+5x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)
b: Ta có: \(\left(2x+7\right)^2=9\left(x+2\right)^2\)
\(\Leftrightarrow\left(3x+4-2x-7\right)\left(3x+4+2x+7\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{5}\end{matrix}\right.\)
c: ta có: \(\left(x+2\right)^2=9\left(x^2-4x+4\right)\)
\(\Leftrightarrow\left(3x-6\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(3x-6-x-2\right)\left(3x-6+x+2\right)=0\)
\(\Leftrightarrow\left(2x-8\right)\left(4x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)
a) \(4x^2+20x+25=\left(2x+5\right)^2\)
b) \(x^2-6x+9=\left(x-3\right)^2\)
c) \(4x^2+12x+9=\left(2x+3\right)^2\)
\(\frac{1}{4x^2-12x+9}-\frac{3}{9-4x^2}=\frac{4}{4x^2+12x+9}\)
\(\Leftrightarrow\frac{-1}{\left(3-2x\right)^2}-\frac{3}{\left(3-2x\right)\left(3+2x\right)}=\frac{4}{\left(2x+3\right)^2}\)
\(\Leftrightarrow-4x^2-12x-9-27+12x^2-16x^2+48x-36=0\)
\(\Leftrightarrow-8x^2+36x-72=0\)
Rút -4 ra ngoài \(\Leftrightarrow2x^2-9x+18=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\x-6=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=3\\x=6\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=6\end{cases}\left(tmđk\right)}\)
a2 - 6a + 9 = (a-3)2
--
1-4x+4x2 = (1-2x)2
--
(a+b)2 - 1 = (a+b-1)(a+b+1)
--
4x2- 9 = (2x-3)(2x+3)
--
25x2 - 20xy + 4y2 = (5x - 2y)2
\(4x^2-9=\left(2x\right)^2-3^2=\left(2x-3\right)\times\left(2x+3\right)\)
\(4x^2-9=\left(2x\right)^2-3^2=\left(2x-3\right)\left(2x+3\right)\)
4x2 - 9 =0
<=> ( 2x +3 ) ( 2x- 3 ) =0
<=> \(\orbr{\begin{cases}2x+3=0\\2x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-3\\2x=3\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}\)