Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^8\times5^8-\left(15^4+1\right)\left(15^4-1\right)\)
\(=15^8-\left[\left(15^4\right)^2-1\right]\)
\(=15^8-15^8+1\)
\(=1\)
3: =(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(5^4-1)(5^4+1)(5^8+1)(5^16+1)
=(5^8-1)(5^8+1)(5^16+1)
=(5^16-1)(5^16+1)
=5^32-1
4:
D=(4^4-1)(4^4+1)(4^8+1)*....*(4^64+1)
=(4^8-1)(4^8+1)*...*(4^64+1)
=...
=4^128-1
5: =(5^2-1)(5^2+1)(5^4+1)*...*(5^128+1)+(5^256-1)
=(5^4-1)(5^4+1)*...*(5^128+1)+5^256-1
=5^256-1+5^256-1
=2*5^256-2
Các câu trả lời trên đều rất tắt nên mình sửa lại nhé :
\(3^4.5^4-\left(15^2+1\right).\left(15^2-1\right)\)
\(=3^4.5^4-\left(15^2+1\right).15^2-\left(15^2+1\right).1\)
\(=3^4.5^4-15^2.15^2+1.15^2-15^2.1+1.1\)
\(=3^4.5^4-15^{2+2}+15^2-15^2+1\)
\(=\left(3.5\right)^4-15^4+15^2-15^2+1\)
\(=15^4-15^4+15^2-15^2+1\)
\(=\left(15^4-15^4\right)+\left(15^2-15^2\right)+1\)
\(=0+0+1\)
\(=1\)
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\ =\left(2^{16}-1\right)\left(2^{16}+1\right)\\ =2^{32}-1 \)
(2x+9)/(x+1)(x+8)-(2x+15)/(x+8)(x+7)+(2x+10)/(x+7)(x+3)=4/3
(x+1+x+8)/(x+1)(x+8)-(x+8+x+7)/(x+8)(x+7)+(x+7+x+3)/(x+7)(x+3)=4/3
1/(x+8)+1/(x+1)-1/(x+7)-1/(x+8)+1/(x+7)+1/(x+3)=4/3
1/(x+1)+1/(x+3)=4/3
(x+3+x+1)/(x+3)(x+1)=4/3
(2x+4)/(x+3)(x+1)=4/3
=>(2x+4).3=(x+3)(x+1).4
6(x+2)=4(x+3)(x+1)
3(x+2)=2(x+3)(x+1)
3x+6=2(x^2+4x+3)
3x+6=2x^2+8x+6
2x^2+8x+6-3x-6=0
2x^2+5x=0
x(2x+5)=0
=> x=0 hoac 2x+5=0
=> x=0 hoac x=-5/2
\(S=-1^2+2^2-3^2+4^2-...+2016^2\)
\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(2016-2015\right)\left(2016+2015\right)\)
\(=3+7+..+4031\)
\(=2033136\)
\(A=\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)-\frac{1}{15}\times4^{64}\)
\(15A=\left(4^2-1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)-4^{64}\)
\(15A=\left(4^4-1\right)\left(4^4+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)-4^{64}\)
\(15A=\left(4^{16}-1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)-4^{64}\)
\(15A=\left(4^{32}-1\right)\left(4^{32}+1\right)-4^{64}\left(4^{32}\right)\)
\(15A=4^{64}-1-4^{64}\)
\(A=-\frac{1}{15}\)
\(\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)...\left(1+\dfrac{1}{120}\right)\)
\(=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}...\dfrac{121}{120}\)
\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}...\dfrac{11^2}{10.12}\)
\(=\dfrac{2}{1}.\dfrac{2}{3}.\dfrac{3}{2}.\dfrac{3}{4}.\dfrac{4}{3}...\dfrac{11}{10}.\dfrac{11}{12}\)
\(=\dfrac{2}{1}\left(\dfrac{2}{3}.\dfrac{3}{2}\right)\left(\dfrac{3}{4}.\dfrac{4}{3}\right)...\left(\dfrac{10}{11}.\dfrac{11}{10}\right).\dfrac{11}{12}\)
\(=\dfrac{2}{1}.\dfrac{11}{12}\)
\(=\dfrac{11}{6}\)
\(3^8.5^8-\left(15^4-1\right).\left(15^4+1\right)=15^8-\left(15^8-1\right)=15^8-15^8+1=1\)