\(\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

\(\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)...\left(1+\dfrac{1}{120}\right)\)

\(=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}...\dfrac{121}{120}\)

\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}...\dfrac{11^2}{10.12}\)

\(=\dfrac{2}{1}.\dfrac{2}{3}.\dfrac{3}{2}.\dfrac{3}{4}.\dfrac{4}{3}...\dfrac{11}{10}.\dfrac{11}{12}\)

\(=\dfrac{2}{1}\left(\dfrac{2}{3}.\dfrac{3}{2}\right)\left(\dfrac{3}{4}.\dfrac{4}{3}\right)...\left(\dfrac{10}{11}.\dfrac{11}{10}\right).\dfrac{11}{12}\)

\(=\dfrac{2}{1}.\dfrac{11}{12}\)

\(=\dfrac{11}{6}\)

8 tháng 3 2017

\(\dfrac{11}{6}\)

5 tháng 3 2017

=11/6 nha bạn!

6 tháng 4 2018

Thừa số tổng quát:

\(1+\dfrac{1}{n^2+2n}=\dfrac{n^2+2n+1}{n^2+2n}=\dfrac{\left(n+1\right)^2}{\left(n+1\right)^2-1}\)

Đặt: \(\left(n+1\right)^2=t\ge0\) biểu thức được phát biểu dưới dạng: \(\dfrac{t}{t-1}\) Thay vào bài toán tìm được giá trị.

19 tháng 3 2017

Ta có A = $\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.\frac{25}{24}...\frac{9604}{9603}$

=$\frac{4}{3}.\frac{3.3}{4.2}.\frac{2.8}{3.5}.\frac{5.5}{8.3}....\frac{97^2}{9408}.\frac{98^2}{9603}$

Ta thấy nếu tử là số lẻ hoặc cơ số lẻ thì thừa số là cơ số , nếu tử là số chẵn thì thừa số nhỏ bằng cơ số chia 2 , thừa số lớn bằng cơ số nhân 2 còn mẫu số được phân tích thành 2 thừa số trong đó có 1 thừa số bằng thừa số trên tử của phân số liền trước đó

=> $\frac{98^2}{9603}=\frac{49.196}{97.99}$

Vậy A=$\frac{196}{99}$

19 tháng 3 2017

\(A=\left(\dfrac{4}{3}\right)\left(\dfrac{9}{8}\right)\left(\dfrac{16}{15}\right)...\left(\dfrac{9604}{9603}\right)\)

\(=\dfrac{2.2}{1.3}\times\dfrac{3.3}{2.4}\times\dfrac{4.4}{3.5}\times\times\times\dfrac{98.98}{97.99}\)

\(=\dfrac{2.3.4.....98}{1.2.3......97}\times\dfrac{2.3.4....98}{3.4.5....99}=\dfrac{98}{1}\times\dfrac{2}{99}=\dfrac{196}{99}\)

\(A=\dfrac{196}{99}\)

8 tháng 6 2017

a ) \(\dfrac{1}{x+1}-\dfrac{5}{x-2}=\dfrac{15}{\left(x+1\right)\left(2-x\right)}\)(1)

ĐKXĐ : \(x\ne1;x\ne2\)

(1)\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{5}{2-x}=\dfrac{15}{\left(x+1\right)\left(2-x\right)}\)

\(\Leftrightarrow2-x+5x+5=15\)

\(\Leftrightarrow4x+7=15\\\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\left(KTMĐKXĐ\right)\)

Vậy pt vô nghiệm .

b ) \(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\) ( 2 )

ĐKXĐ : \(x\ne3;x\ne-2\)

(2) \(\Leftrightarrow3x-x^2+6-2x+x^2+2x=3x+6-x^2-2x\)

\(\Leftrightarrow x^2+2x=0\)

\(\Leftrightarrow x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐKXĐ\right)\\x=-2\left(KTMĐKXĐ\right)\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là S={0}.

c ) \(\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{8}{\left(x-1\right)\left(3-x\right)}\) (3)

ĐKXĐ : \(x\ne1;x\ne3\)

\(\left(3\right)\Leftrightarrow\dfrac{6}{x-1}+\dfrac{4}{3-x}=\dfrac{8}{\left(x-1\right)\left(3-x\right)}\)

\(\Leftrightarrow6\left(3-x\right)+4\left(x-1\right)=8\)

\(\Leftrightarrow18-6x+4x-4=8\)

\(\Leftrightarrow-2x=6\)

\(\Leftrightarrow x=-3\)

Vậy tập nghiệm của phương trình là S={-3}

d ) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\) (4)

ĐKXĐ : \(x\ne0;x\ne2\)

\(\left(4\right)\Leftrightarrow x^2+2x-x+2=2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTMĐKXĐ\right)\\x=-1\left(TMĐKXĐ\right)\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là S={-1}

8 tháng 6 2017

a) \(\dfrac{1}{x+1}-\dfrac{5}{x-2}=\dfrac{15}{\left(x+1\right)\left(2-x\right)}\) ( đk: x ≠ -1; x ≠ 2 )

\(\Leftrightarrow\) \(\dfrac{1}{x+1}+\dfrac{5}{2-x}=\dfrac{15}{\left(x+1\right)\left(2-x\right)}\)

\(\Leftrightarrow\) \(2-x+5\left(x+1\right)=15\)

\(\Leftrightarrow\) \(2-x+5x+5=15\)

\(\Leftrightarrow\)\(4x=8\)

\(\Rightarrow\) \(x=2\) ( KTM )

S = ∅

b) \(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\) ( đk: x ≠ - 2 ; x ≠ 3 )

\(\Leftrightarrow\) \(\left(x+2\right)\left(3-x\right)+x\left(x+2\right)=5x+2\left(3-x\right)\)

\(\Leftrightarrow\) \(3x-x^2+6-2x+x^2+2x=5x+6-2x\)

\(\Leftrightarrow\) \(3x+6=3x+6\)

\(\Rightarrow\)\(0x=0\) ( TM )

\(\Rightarrow\) Phương trình vô số nghiệm

S = R

c) \(\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{8}{\left(x-1\right)\left(3-x\right)}\) ( đk: x ≠ 1 ; x ≠ 3 )

\(\Leftrightarrow\) \(\dfrac{6}{x-1}+\dfrac{4}{3-x}=\dfrac{8}{\left(x-1\right)\left(3-x\right)}\)

\(\Leftrightarrow\)\(6\left(3-x\right)+4\left(x-1\right)=8\)

\(\Leftrightarrow\) \(18-6x+4x-4=8\)

\(\Leftrightarrow\) \(-2x=-6\)

\(\Rightarrow x=3\) ( KTM )

S = ∅

d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\) (đk: x ≠ 2; x ≠ 0 )

\(\Leftrightarrow\) \(x\left(x+2\right)-x+2=2\)

\(\Leftrightarrow\) \(x^2+2x-x+2=2\)

\(\Leftrightarrow\) \(x^2+x=0\)

\(\Leftrightarrow\) \(x\left(x+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\left(KTM\right)\\x=1\left(TM\right)\end{matrix}\right.\)

S = \(\left\{2\right\}\)

19 tháng 4 2017

\(A=4.\dfrac{25}{16}+25.\left[\dfrac{9}{16}:\dfrac{125}{64}\right]:\dfrac{-27}{8}\)

\(=\dfrac{25}{16}+25.\dfrac{36}{125}:\dfrac{-27}{8}=-\dfrac{137}{240}\left(1\right)\)

\(B=125.\left[\dfrac{1}{25}+\dfrac{1}{64}:8\right]-64.\dfrac{1}{64}\)

\(=125.\dfrac{89}{1600}:8-64.\dfrac{1}{64}=\dfrac{-67}{512}\left(2\right)\)

Vì (2) > (1) => B > A

22 tháng 4 2017

a) 1x13x2x31=2xx2+x+11x−1−3x2x3−1=2xx2+x+1

Ta có: x31=(x1)(x2+x+1)x3−1=(x−1)(x2+x+1)

=(x1)[(x+12)2+34]=(x−1)[(x+12)2+34] cho nên x3 – 1 ≠ 0 khi x – 1 ≠ 0⇔ x ≠ 1

Vậy ĐKXĐ: x ≠ 1

Khử mẫu ta được:

x2+x+13x2=2x(x1)2x2+x+1=2x22xx2+x+1−3x2=2x(x−1)⇔−2x2+x+1=2x2−2x

4x23x1=0⇔4x2−3x−1=0

4x(x1

26 tháng 11 2017

Bài 1 : chị phân tích ra thừa số nguyên tố, rồi rút gọn đi là ok mak

Bài 2:

\(B=\dfrac{\left(1^4+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)........\left(11^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right)........\left(12^4+\dfrac{1}{4}\right)}\)

\(=\dfrac{\left(1^2+1+\dfrac{1}{2}\right)\left(1^2-1+\dfrac{1}{2}\right).........\left(11^2-11+\dfrac{1}{2}\right)}{\left(2^2+1+\dfrac{1}{2}\right)\left(2^2-2+\dfrac{1}{2}\right).......\left(12^2-12+\dfrac{1}{2}\right)}\)

\(=\dfrac{\dfrac{1}{2}\left(1.2+\dfrac{1}{2}\right)\left(2.3+\dfrac{1}{2}\right).......\left(11.12+\dfrac{1}{2}\right)}{\left(2.3+\dfrac{1}{2}\right)\left(3.4+\dfrac{1}{2}\right)......... \left(12.13+\dfrac{1}{2}\right)}\)

\(=\dfrac{\dfrac{1}{2}}{12.13+\dfrac{1}{2}}\)

\(=\dfrac{1}{313}\)

26 tháng 11 2017

\(A=\dfrac{35.\left(27^8+2.9^{11}\right)}{15.\left(81^6-12.3^{19}\right)}\)

\(=\dfrac{35.27^8+35.2.9^{11}}{15.81^6-15.12.3^{19}}\)

\(=\dfrac{5.7.\left(3^3\right)^8+5.7.\left(3^2\right)^{11}}{3.5.\left(3^4\right)^6-3.5.3.2^2.3^{19}}\)

\(=\dfrac{5.7.3^{24}+5.7.3^{22}}{5.3^{25}-3^{21}.2^2.5}\)

\(=\dfrac{5.7.3^{22}\left(3^2+1\right)}{5.3^{21}\left(3^4-2^2\right)}\)

\(=\dfrac{7.2.10}{81-4}\)

\(=\dfrac{720}{77}\)

b: \(=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x+1}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right)\cdot\dfrac{x}{x+1}\)

\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}\cdot\dfrac{x}{x+1}\)

\(=\dfrac{6x^2+6x}{3\left(x+1\right)}\cdot\dfrac{1}{x+1}\)

\(=\dfrac{6x\left(x+1\right)}{3\left(x+1\right)^2}=\dfrac{2x}{x+1}\)

c: \(VT=\left[\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}+\dfrac{1}{\left(x+1\right)^2}\cdot\dfrac{1+x^2}{x^2}\right]\cdot\dfrac{x^3}{x-1}\)

\(=\left(\dfrac{2}{x\left(x+1\right)^2}+\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}\right)\cdot\dfrac{x^3}{x-1}\)

\(=\dfrac{2x+x^2+1}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}\)

\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2}\cdot\dfrac{x}{x-1}=\dfrac{x}{x-1}\)