Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1) VP= \frac{1}{n}-\frac{1}{n+1}\)\(= \frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}\)\(= \frac{n+1-n}{n(n+1)}\)\(= \frac{1}{n(n+1)}\)\(= VT\)
2) \(VP= \frac{1}{n+1}-\frac{1}{(n+1)(n+2)}= \frac{(n+2)}{n(n+1)(n+2)}-\frac{n}{n(n+1)(n+2)}\)\(= \frac{n+2-n}{n(n+1)(n+2)}= \frac{2}{n(n+1)(n+2)}=VT\)
3) \(VP= \frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}=\frac{n+3}{n(n+1)(n+2)(n+3)}-\frac{n}{n(n+1)(n+2)(n+3)}\)\(= \frac{n+3-n}{n(n+1)(n+2)(n+3)}=\frac{3}{n(n+1)(n+2)(n+3)(n+4)}=VT\)
Những ý sau làm tương tự, thế mà chẳng thèm mở mồm ra hỏi bạn :))
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
Ta có
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+...+\frac{1}{2}\left(\frac{1}{2n+1}-\frac{1}{2n+3}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2n+3}\right)\)
\(=\frac{1}{2}\cdot\frac{2n+2}{2n+3}\)
\(=\frac{2n+2}{4n+6}=\frac{2\left(n+1\right)}{2\left(2n+3\right)}=\frac{n+1}{2n+3}\)
\(\RightarrowĐPCM\)
Tính các giới hạn sau:
a) lim n^3 +2n^2 -n+1
b) lim n^3 -2n^5 -3n-9
c) lim n^3 -2n/ 3n^2 +n-2
d) lim 3n -2n^4/ 5n^2 -n+12
e) lim (căn 2n^2 +3 - căn n^2 +1)
f) lim căn (4n^2-3n). -2n
HGYTTYYRDTETDUYYU44RT8IP9Y635T6Y7U8IOP[]34567890SDFGHJKDFGHJKCVBNM, BN
1/1x3 + 1/3x5 + 1/5x7 + ... + 1/(2n+1)x(2n+3) = n+1/2n+3
2/1x3 + 2/3x5 + 2/5x7 + ... + 2/(2n+1)x(2n+3) = 2n+2/2n+3
1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/2n+1 - 1/2n+3 = 2n+2/2n+3
1 - 1/2n+3 = 2n+2/2n+3
Bn nào thông minh thế, ra bài này đố Tây lm đc, ai lm đc mk bái lm sư phụ lun, sửa đề đê
Ủng hộ mk nha ^_-
(2n - 3)⋮ (n +1) ( -1 ≠ n; n \(\in\) Z)
[2(n + 1) - 5] ⋮ (n + 1)
5 ⋮ (n + 1)
(n + 1) \(\in\) Ư(5) = {-5; -1; 1; 5}
Lập bảng ta có:
Theo bảng trên ta có n \(\in\) {-6; -2; 0; 4}
Vậy n \(\in\) {-6; -2; 0; 4}
ta có :2n-3 ⋮ n+1
suy ra : 2(n+1)-5 ⋮ n+1 | giải thích :2n-3=2(n+1)-5=2n+2-5→2-5=-3
mà n+1 ⋮ n+1
nên 2.n+1 ⋮ n+1
suy ra : -5 ⋮ n+1
do đó : n+1 ϵ ư(-5)={-1;1;-5;5}
...