Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{6.7.8}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{6.7}-\frac{1}{7.8}\)
\(=\frac{1}{1.2}-\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{56}\)
\(=\frac{28}{56}-\frac{1}{56}=\frac{27}{56}\)
Dấu . là nhân nha
\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)
\(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)
.......................................
\(\frac{2}{6.7.8}=\frac{1}{6.7}-\frac{1}{7.8}\)
S= \(\frac{1}{1.2}-\frac{1}{7.8}=\frac{27}{56}\)
Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)
\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)
hay \(A=\dfrac{-4949}{19800}\)
ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương
\(2C=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{39-37}{37.38.39}\)
\(2C=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(2C=\frac{1}{1.2}-\frac{1}{38.39}\)
\(C=\frac{617}{1482}\)
\(3D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(3D-D=1-\frac{1}{3^8}\)
\(D=\frac{1}{2}-\frac{1}{2.3^8}\)
Ta có:\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{38.39}\right)\)
b,\(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)
\(\Rightarrow3D=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^7}\)
\(\Rightarrow2D=1-\frac{1}{3^8}\)
\(\Rightarrow D=\frac{3^8-1}{3^8}:2\)
Giải:
Ta có:
\(A=2\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\right).\)
\(A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{98.99.100}.\)
\(A=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}.\)
\(A=\left(\dfrac{1}{2.3}-\dfrac{1}{2.3}\right)+\left(\dfrac{1}{3.4}-\dfrac{1}{3.4}\right)+...+\left(\dfrac{1}{98.99}-\dfrac{1}{98.99}\right)+\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right).\)
\(A=0+0+...+0+\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right).\)
\(A=\dfrac{1}{1.2}-\dfrac{1}{99.100}.\)
\(A=\dfrac{1}{2}-\dfrac{1}{9900}.\)
\(A=\dfrac{4950}{9900}-\dfrac{1}{9900}.\)
\(A=\dfrac{4949}{9900}.\)
Vậy \(A=\dfrac{4949}{9900}.\)
~ Chúc bn học tốt!!! ~
Bài mik đúng thì nhớ tick mik nha!!!
Đặt A = 1 x 2 x 3 + 2 x 3 x 4 + 3 x 4 x 5 +....+ 98 x 99 x 100
4A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 4 + 4 x 5 x 4 +....+ 98 x 99 x 100 x 4
4A = 1 x 2 x 3 x ( 4 - 0 ) + 2 x 3 x 4 x ( 5 - 1 ) + 4 x 5 x 6 x ( 7 - 3 ) +....+ 98 x 99 x 100 x ( 101 - 97 )
4A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 5 - 1 x 2 x 3 x 4 + 4 x 5 x 6 x 7 - 3 x 4 x 5 x 6 + .... + 98 x 99 x 100 x 101 - 98 x 99 x 100 x 97
A = 98 x 99 x 100 x 97 / 4
A = 98 x 99 x 25 x 97
2/1×2×3 + 2/2×3×4 + 2/3×4×5 + ... + 2/36×37×38 + 2/37×38×39
= 1/1×2 - 1/2×3 + 1/2×3 - 1/3×4 + 1/3×4 - 1/4×5 + ... + 1/36×37 - 1/37×38 + 1/37×38 - 1/38×39
= 1/1×2 - 1/38×39
= 1/2 - 1/1482
= 370/741
\(\text{Ta có: }\) \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}+....+\frac{1}{37.38}-\frac{1}{38.39}\)
\(=\frac{1}{2}-\frac{1}{38.39}\)
\(=\frac{1}{2}-\frac{1}{1482}\)
\(=\frac{370}{741}\)