Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)
\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)
hay \(A=\dfrac{-4949}{19800}\)
a)
x + 1 chia hết -5 và -10 < x < 20
x + 1 = -5k và -10 < x < 20
x = -5k - 1 và -10 < x < 20
x ϵ {-6; -1; 4; 9; 14; 19}
b)
-5 chia hết x - 1
x - 1 ϵ Ư(-5) hay x - 1 ϵ {1; 5; -1; -5}
x ϵ {2; 6; 0; -4}
c)
x + 3 chia hết x - 1
(x + 3) - (x - 1) chia hết x - 1
4 chia hết x - 1 (từ đây làm tương tự như câu b)
d)
3x + 2 chia hết x - 1
(3x + 2) - 3(x - 1) chia hết x - 1
5 chia hết x - 1 (từ đây làm tương tự như câu b)
a) Ta có: (2x+1)(y+5)=3
=>2x+1 và y+5 thuộc Ư(3)={1;3;-1;-3}
Ta có bảng kết quả:
2x+1 | 1 | 3 | -1 | -3 |
y+5 | 3 | 1 | -3 | -1 |
x | 0 | 1 | -1 | -2 |
y | -2 | -4 | -8 | -6 |
Vậy(x;y) thuộc {(0;-2);(1;-4);(-1;-8);(-2;-6)}
b)Ta có: (x-3)(2y+1)=7
=>x-3 và 2y+1 thuộc Ư(7)={1;7;-1;-7}
Ta có bảng kết quả:
x-3 | 1 | 7 | -1 | -7 |
2y+1 | 7 | 1 | -7 | -1 |
x | 4 | 10 | 2 | -4 |
y | 3 | 0 | -4 | -1 |
Vậy (x;y) thuộc {(4;3);(10;0);(2;-4);(-4;-1)}
a, y = (x+y+z+t)-(x+z+t) = 1-2 = -1
z = (x+y+z+t)-(x+y+t) = 1-3 = -2
t = (x+y+z+t)-(x+y+z) = 1-4 = -3
x = x+y+z+t-y-z-t = 1+1+2+3 = 7
b, => x+y+y+z+x+z = 11+3+2
=> 2.(x+y+z) = 16
=> x+y+z = 16 : 2 = 8
x = x+y+z-(y+z) = 8-3 = 5
y = x+y-x = 11 - 5 = 6
z = x+z - z = 2 - 5 = -3
Tk mk nha
=1/2-1/3-1/4+1/3-1/4-1/5+1/5-1/6-1/7+...+1/35-1/36-1/37
giao hoán, kết hợp là ra nha
ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương