K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

Gọi độ dài các cạnh góc vuông lần lượt là  x ; y x , y > 0

Theo định lí Py – ta – go ta có:  x 2 + y 2 = 26 2 ⇔ x 2 + y 2 = 676

Theo bài ra ta có:  x 5 = y 12 ⇒ x 2 25 = y 2 144 = x 2 + y 2 25 + 144 = 676 169 = 4

Khi đó ta có:  x 2 = 25.4 y 2 = 144.4 ⇒ x = 10 c m y = 24 c m

Chọn đáp án B.

3 tháng 12 2018

14 tháng 2 2018

giả sử tam giác ABC vuông tại A(AC>AB)

ta có BC=102 cm

AC = (15.AB )/8 

tam giác ABC vuông tại A(giả thiết)

=> AB2 + AC2 =BC2

(=) AB2 + 225/64 AB2 = 1022 = 10404

(=) 289 AB2 = 10404.64=665856

=> AB= 2304

=> AB = \(\sqrt{2304}=48\)

AC= 15/8 . 48 = 90 (cm)

#Học-tốt

24 tháng 2 2020

Giả sử hai cạnh góc vuông cần tìm là a và b  (cm) ( b>a>0)

Vì hai canh góc vuông tỉ lệ với 8 và 15 nên a:b=8:15

hay a/8=b/15=k (k>0)

suy ra a=8k, b = 15k (1) 

vì tam giác vuông có cạnh huyền bằng 102 nên a^2 + b^2= 1022 (2)

từ (1) va (2) suy ra 64k2 + 225 k2 = 10404

289 k2 = 10404

k2=36

k=6

a=48 (cm), b = 90 (cm)

Đặt 2 cạnh góc vuông và cạnh huyên của tam giác lần lượt là  \(a;b;c\left(a;b\ne0\right)\)

Vì các cạnh góc vuông của tam giác lần lượt tỉ lệ với 8 và 15 \(\Rightarrow\frac{a}{8}=\frac{b}{15}\Leftrightarrow\frac{a^2}{8^2}=\frac{b^2}{15^2}\)

Vì là tam giác vuông \(\Rightarrow a^2+b^2=c^2\) ( ĐL Pytago ) . Áp dụng t/c dãy tỉ số bằng nhau

Ta có : \(\frac{a^2}{8^2}=\frac{b^2}{15^2}=\frac{a^2+b^2}{8^2+15^2}=\frac{c^2}{64+225}=\frac{10404}{289}=36\)

Vì \(\frac{a^2}{8^2}=36\Rightarrow\sqrt{\frac{a^2}{8^2}}=\sqrt{36}\Rightarrow\frac{a}{8}=6\Leftrightarrow a=6.8=48\)

Vì \(\frac{b^2}{15^2}=36\Rightarrow\sqrt{\frac{b^2}{15^2}}=\sqrt{36}\Rightarrow\frac{b}{15}=6\Leftrightarrow b=15.6=90\)

Vậy độ dài hai cạnh góc vuông của tam giác lần lượt là 48 và 90

Gọi AB(cm),AC là hai cạnh góc vuông, BC(cm) là cạnh huyền(Điều kiện: AB>0; AC>0)

Theo đề, ta có: AB:AC=3:4 và BC=45(cm)

\(\Leftrightarrow\dfrac{AB}{3}=\dfrac{AC}{4}\)

hay \(AB=\dfrac{3}{4}\cdot AC\)

Áp dụng định lí Pytago, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\left(\dfrac{3}{4}\cdot AC\right)^2+AC^2=45^2\)

\(\Leftrightarrow\dfrac{9}{16}\cdot AC^2+AC^2=45^2=2025\)

\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=2025\)

\(\Leftrightarrow AC^2=2025:\dfrac{25}{16}=2025\cdot\dfrac{16}{25}=1296\)

hay AC=36(Thỏa ĐK)

Ta có: \(AB=\dfrac{3}{4}\cdot AC\)(cmt)

mà AC=36cm(cmt)

nên \(AB=\dfrac{3}{4}\cdot36=27\left(nhận\right)\)

Vậy: Độ dài hai cạnh góc vuông là 27cm; 36cm

24 tháng 2 2021

Vẽ hình bạn ơi

11 tháng 1 2018

Theo bài ra ta có: Độ dài các cạnh góc vuông tỉ lệ với 3 và 4. Nên ta có:

\(\frac{AB}{3}=\frac{AC}{4}\) \(\Rightarrow\left(\frac{AB}{3}\right)^2=\left(\frac{AC}{4}\right)^2\) \(\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)

Theo định lí Py-ta-go, tam giác vuông ABC có cạnh huyền BC \(\Rightarrow AB^2+AC^2=BC^2=4^2=16\) 

                                          Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

                                                \(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{16}{25}\)

                                        \(\Rightarrow\frac{AB^2}{9}=\frac{16}{25}\Rightarrow AB^2=5,76\Rightarrow AB=2,4\left(cm\right)\) 

                                             \(\frac{AC^2}{16}=\frac{16}{25}\Rightarrow AC^2=10,24\Rightarrow AC=3,2\left(cm\right)\)     

                                           Vậy AB = 2,4 cm

                                                  AC = 3,2 cm

                                                  BC = 4 cm                     

4 tháng 2 2019

Gọi độ dài các cạnh góc vuông của tam giác lần lượt là 3k và 4k với k>0. Dùng định lý Py-ta-go tính được độ dài cạnh huyền là 5k, do đó 5k = 20

=> k = 4.

Từ đó độ dài các cạnh góc vuông lần lượt là 12 cm và 16 cm.

7 tháng 1 2017