K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Ta có: \(2^{x+3}+2^x=144\)

\(\Leftrightarrow2^x\cdot9=144\)

\(\Leftrightarrow2^x=16\)

hay x=4

14 tháng 10 2021

a) (x ^ 54)^2 = x                                         

         x^108  = x

Để: x^108  = x 

=> x=0 hoặc x=1

12 tháng 11 2017

a,5mũ 36=(5mũ3)mũ12=125 mũ12

11^24=(11^2)12=121^12

vì 121<125 nên 5^36>11^24

14 tháng 11 2017

cảm ơn nha

27 tháng 8 2023

Bài 1 :

\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)

\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)

\(\Rightarrow M< N\)

27 tháng 8 2023

Bài 3 :

a) \(t^2+5t-8\) khi \(t=2\)

\(=5^2+2.5-8\)

\(=25+10-8\)

\(=27\)

b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)

\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)

\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)

c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)

\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)

\(\left(1\right)=1^3=1\)

8 tháng 12 2019

\(a.x-143=57\)

\(x=200\)

\(b.\left(8x-12\right):4=3^3\)

\(8x-12=27.4\)

\(8x-12=108\)

\(8x=120\)

\(x=15\)

8 tháng 12 2019

\(d.10+2x=4^2\)

\(2x=16-10\)

\(2x=6\)

\(x=3\)

20 tháng 9 2017

Bài 1 :

a) 2x-64=26

=> 2x-26=26

2x=26+26 (26+6)

2x = 212

<=> x = 12

b) 2x:16=128

=> 2x.24 = 27

2x = 27:24 (27-4)

2x = 23

<=> x=3

Bài 2 :

b) A= 82 = (23)2 = 26  

B= 26

=> A = B ( 26=26 )

c) A= 35 = 243

B = 28 = 256

=> A < B ( 243 < 256 )

28 tháng 7 2019

\(a=2^1+2^2+2^3+...+2^{100}\)

\(2a=2^2+2^3+2^4+...+2^{101}\)

\(2a-a=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(a=2^{101}-2\)

\(a+2=2^{101}-2+2=2^{201}\)

\(\Rightarrow x=101\)

28 tháng 7 2019

\(a=2^1+2^2+2^3+...+2^{100}\)

\(2a=2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(2a-a=\left(2^2+2^3+2^4+...+2^{99}+2^{100}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(a=2^{99}-2\)

\(a+2=2^{99}-2+2=2^{99}\)

\(\Rightarrow x=99\)