Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để a,b có UCLN là 25 thì b ko chia hết cho a vậy ta chọn nếu a = 25 thì b = 150 mà 150 chia hết cho 25 nên đáp án này sai . ta tiếp tục chon a = 50 => b = 75 mà 75 ko chia hết cho 50
=> a=50
b=75
Bài 1:
Vì \(ƯCLN\left(a,b\right)=16\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases};\left(m,n\right)=1;m,n\in N}\)
Thay a = 16.m, b = 16.n vào a+b = 128, ta có:
\(16.m+16.n=128\)
\(\Rightarrow16.\left(m+n\right)=128\)
\(\Rightarrow m+n=128\div16\)
\(\Rightarrow m+n=8\)
Vì m và n nguyên tố cùng nhau
\(\Rightarrow\) Ta có bảng giá trị:
m | 1 | 8 | 3 | 5 |
n | 8 | 1 | 5 | 3 |
a | 16 | 128 | 48 | 80 |
b | 128 | 16 | 80 | 48 |
Vậy các cặp (a,b) cần tìm là:
(16; 128); (128; 16); (48; 80); (80; 48).
Bài 2:
Gọi d là ƯCLN (2n+1, 2n+3), d \(\in\) N*
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Vì 2n+3 và 2n+1 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+1,2n+3\right)=1\)
\(\Rightarrow\) 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.
\(2\left(n+5\right)⋮2\left(n+1\right)\)
\(\Rightarrow2n+1+4⋮2n+1\)
mà \(2n+1⋮2n+1\Rightarrow4⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Nếu : 2n + 1 = 1 => n = 0 ( TM )
2n + 1 = -1 => -1 ( loại )
2n + 1 = 2=> 1/2 ( loại )
2n + 1 = -2 = -3/2 ( loại )
2n + 1 = 4 => 3/2 ( loại )
2n + 1 = -4 = -5/2 ( loại )
Vậy \(x\in\left\{0\right\}\)
\(2\left(n+5\right)⋮2n+1\)
=> \(2n+10⋮2n+1\)
=> \(\left(2n+1\right)+9⋮2n+1\)
Ta có : \(\left(2n+1\right)⋮2n+1;9⋮2n+1\)
=> \(2n+1\inƯ9\)
=>\(\hept{\begin{cases}2n+1=1\\2n+1=3\\2n+1=9\end{cases}}\)=>\(\hept{\begin{cases}2n=1-1\\2n=3-1\\2n=9-1\end{cases}}\) =>\(\hept{\begin{cases}2n=0\\2n=2\\2n=8\end{cases}}\) =>\(\hept{\begin{cases}n=0:2\\n=2:2\\n=8:2\end{cases}}\) =>\(\hept{\begin{cases}n=0\left(TM\right)\\n=1\left(TM\right)\\n=4\left(TM\right)\end{cases}}\)
Vậy \(n\in\left\{0;1;4\right\}\)