K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6

Bài 1:

Gọi số dư khi chia 346,414,539 cho a là $r$. ĐK: $r< a$

Ta có:

$346-r\vdots a$

$414-r\vdots a$

$539-r\vdots a$

Suy ra:

$539-r-(414-r)\vdots a\Rightarrow 125\vdots a$

$539-r-(346-r)\vdots a\Rightarrow 193\vdots a$

$(414-r)-(346-r)\vdots a\Rightarrow 68\vdots a$

$\Rightarrow a=ƯC(125,193,68)$
$\Rightarrow ƯCLN(125,193,68)\vdots a$

$\Rightarrow 1\vdots a\Rightarrow a=1$

 

AH
Akai Haruma
Giáo viên
30 tháng 6

Bài 2:

Vì $ƯCLN(a,b)=16$ nên đặt $a=16x, b=16y$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.

Ta có:

$a+b=16x+16y=128$

$\Rightarrow x+y=8$

Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (7,1)$

$\Rightarrow (a,b)=(16, 112), (48,80), (80,48), (112,16)$