Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cau b)
ta có tgiac abc vuông tại a(gthiet)
theo định lí pi ta go ta có:
BC^2=AC^2+AB^2=81+144=225
suy ra BC=15
*BD=?
ta có AD la p/giac (giả thiết)
suy ra BD/DC=AB/AC (tính chất đương phân giác)
suy ra BD/BD+DC=9/9+12=3/7
suy ra BD/BC=3/7
suy ra BD=15.3/7=45/7
DC=BC-BD=15-45/7=60/7
*Câu c)............
a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AD là phân giác
=>BD/CD=AB/AC=3/4
=>4DB=3CD
mà DB+DC=15
nên DB=45/7cm; DC=60/7cm
b: Xet ΔABC vuông tại A và ΔEDC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEDC
a:
Ta có: DE\(\perp\)AC
AB\(\perp\)AC
Do đó: DE//AB
Xét ΔCAB có ED//AB
nên \(\dfrac{CE}{EA}=\dfrac{CD}{DB}\)
=>\(\dfrac{BD}{DC}=\dfrac{AE}{EC}\)
b: Xét ΔHBA vuông tại H và ΔEDC vuông tại E có
\(\widehat{EDC}=\widehat{HBA}\)(hai góc đồng vị, DE//AB)
Do đó: ΔHBA~ΔEDC