Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Với $n$ nguyên, để $\frac{3n+4}{n-1}$ nguyên thì:
$3n+4\vdots n-1$
$\Rightarrow 3(n-1)+7\vdots n-1$
$\Rightarrow 7\vdots n-1$
$\Rightarrow n-1\in \left\{\pm 1; \pm 7\right\}$
$\Rightarrow n\in \left\{2; 0; 8; -6\right\}$
Thử các giá trị này của $n$ vào $\frac{6n-3}{3n+1}$ thì $n=0$ là TH duy nhất thỏa mãn $\frac{6n-3}{3n+1}$ cũng là số nguyên.
3n+4 chia hết cho n+1
3.(n+1) chai hết cho n+1
3n+3 chia hết cho n+1
3n+4-(3n+3) chia hết cho n+1
1 chia hết cho n+1
n+1 thuộc Ư(1)
n+1 thuộc (1;-1)
n thuộc ( 0;-2)
vậy n thuộc ( 0;-2)
câu 1=4% nhớ tích nha còn câu 2;3 bạn trên làm đúng rồi
Để phân số trên thỏa mãn điều kiện thì:
3n+4 chia hết cho n-1
3n+4=3n-3+7
=3.(n-1)+7
Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1
n-1 thuộc +-1;+-7
Thử các trường hợp ra,ta có:
n thuộc:0;2;8;-6.