Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác AIB và AIC, có
IB= IC ( I là trung điểm BC )
AI chung , AIB = AIC ( A là trung trục của BC )
suy ra 2 tam giac tren bang nhau
b. Cm
1, Xét △ABI vuông tại I và △ACI vuông tại I
Có: AI là cạnh chung
BI = CI
=> △ABI = △ACI (2cgv)
2, Chứng minh gì?
3, Xét △AHI vuông tại H và △AKI vuông tại K
Có: AI là cạnh chung
HAI = KAI (△ABI = △ACI)
=> △AHI = △AKI (ch-gn)
=> AH = AK (2 cạnh tương ứng)
=> △AHK cân tại A
b, Vì △AHK cân tại A => AHK = (180o - HAK) : 2 (1)
Ta có: △ABI = △ACI (cmt) => AB = AC => △ABC cân tại A => ABC = (180o - BAC) : 2 (2)
Từ (1) và (2) => AHK = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> HK // BC (dhnb)
Giải
1,a/ Xét tam giác AIB và tam giác AIC có:
BI = IC (gt)
^AIB = ^AIC (AI là đường trung trực của BC)
AI là cạnh chung
=> Vậy tam giác AIB = tam giác AIC (c.g.c)
2,a/ Vì ΔAIB = ΔAIC (cmt)
=> ^BAI = ^CAI (2 góc tương ứng)
Xét ΔAHI và ΔAKI, có:
^BAI = ^CAI (cmt)
AI chung (gt)
^AHI = ^AKI =90 độ (gt)
=> 2 tam giác = nhau
=> AH = AK (2 cạnh tương ứng)
=> tam giác AHK có 2 cạnh bằng nhau
b
Vì AH = AK (cmt)
=> ΔAHK cân tại A.
=> ^AHK = (180° - ^A) : 2 (1)
Lại có:
ΔAIB = ΔAIC (cmt)
=> AB = AC
=> ΔABC cân tại A
=> ^ABC = (180° - ^A) : 2 (2)
Từ (1) và (2)
=> ^AHK = ^ABC
Mà 2 góc đồng vị
=> HK // BC
=> ĐCPCM
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
a: Xét ΔBAI vuông tại A và ΔBHI vuông tại H có
BI chung
\(\widehat{ABI}=\widehat{HBI}\)
Do đó: ΔBAI=ΔBHI
Suy ra: IA=IH
b: Xét ΔAIK vuông tại A và ΔHIC vuông tại H có
IA=IH
\(\widehat{AIK}=\widehat{HIC}\)
Do đó: ΔAIK=ΔHIC
Suy ra: IK=IC
hay ΔIKC cân tại I
a: Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AI chung
IB=IC
Do đó: ΔAIB=ΔAIC
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
=>ΔAIB=ΔAIC
b: ΔAIB=ΔAIC
=>góc AIB=góc AIC=180/2=90 độ
=>AI vuông góc BC
IB=IC=BC/2=3cm
AI=căn 5^2-3^2=4cm
c: góc MIN=360-90-90-120=60 độ
Xét ΔAMI vuông tại M và ΔANI vuông tại N có
AI chung
góc MAI=góc NAI
=>ΔAMI=ΔANI
=>IM=IN
=>ΔIMN cân tại I
mà góc MIN=60 độ
nên ΔIMN đều
Trong tam giác ABC có:
∠A + ∠(ABC) + ∠(ACB) = 180o ⇒ ∠(ABC) + ∠(ACB) = 180o - 80o = 100o
Mà BI và CI lâ các tia phân giác nên
∠(ABC) + ∠(ACB) = 2.∠(IBC) + 2.∠(ICB) = 2 (∠(IBC) + ∠(ICB) )
Suy ra ∠(IBC) + ∠(ICB) = 50o
Mà ∠(IBC) + ∠(ICB) + ∠(BIC) = 180o ⇒ ∠(BIC) = 130o.