Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
Bài này cô mk dạy phải chứng minh thẳng hàng, không đc ra ngay nếu không sẽ mất điểm đó bạn.
-Thêm điều kiện góc C = góc F để tam giác ABC = tam giác DEF (g-c-g)
-Thêm điều kiện BC = EF để tam giác ABC = tam giác DEF ( c.huyền - c.g.vuông )
- Thêm điều kiện AB = DE để tam giác ABC = tam giác DEF ( c-g-c)
2. Xét tam giác ABH và tam giác ACK có :
AB = AC (tam giác ABC cân tại A)
Góc A chung
góc AKC = góc AHB ( = 90 độ )
=>Tam giác AKC và tam giác ABH (c.huyền-g.nhọn)
=>AH = AK ( cặp cạnh t/ứng )
Bạn tự vẽ hình nha.
Xét tam giác BED và tam giác CKD ta có:
DE=DK
BD=CD( D là trung điểm của BC)
BDE=CDK(đối đỉnh)
Do đó tam giác BED=tam giác CKD(c-g-c)
Vậy góc BED=góc CKD.Mà DK vuông góc với AC nên góc DKA =góc DKC=90 độ
=>BED =90 độ