K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

Xét  \(\Delta ODC\)và    \(\Delta OBA\)có:

   \(\widehat{DOC}=\widehat{BOA}\)(dd)

  \(\widehat{OCD}=\widehat{OAB}\) (slt)

suy ra:   \(\Delta ODC~\Delta OBA\) (g.g)

\(\Rightarrow\)\(\frac{OD}{OB}=\frac{OC}{OA}\)

\(\Rightarrow\)\(OD=\frac{OB.OC}{OA}=12\)

28 tháng 9 2019

Gọi H là trung điểm DC. 

Chứng minh HE// IF( vì cùng //BC)

=> HE vuông FK ( vì FK vuông IF)

Tương tự HF// EI( vì cùng //AD)

=> HF vuông  EK( vì EK vuông IE)

Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.1) C/m : tứ giác AMND là hình bình hành.2) C/m: tứ giác AMCN là hình bình hành.B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.1) C/m: O là trung điểm của EF.2) C/m: tứ  giác AECF là hình bình hành3) C/m: tứ giác BDEF là hình bình hành.B3: cho hình bình...
Đọc tiếp

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.

1) C/m : tứ giác AMND là hình bình hành.

2) C/m: tứ giác AMCN là hình bình hành.

B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.

1) C/m: O là trung điểm của EF.

2) C/m: tứ  giác AECF là hình bình hành

3) C/m: tứ giác BDEF là hình bình hành.

B3: cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD.

1) C/m: tứ giác AECF là hình bình hành.

2) C/m: O là trung điểm của EF.

B4: Cho hình bình hành ABCD có hai đường chéo AB và CD cắt nhau tại O. Gọi M,N,P,Q lần lượt là tủng điểm của các đoạn OA, OB, OC, OD.

1)C/m : tứ giác MNPQ là hình bình hành.

2) C/m: các tứ giác ANCQ , BPDM là các hình bình hành.

Giúp mik với nha, thanks !!!!

3
20 tháng 8 2017

đã hỏi thì hỏi ít thôi. hỏi lắm thế

20 tháng 8 2017

hỏi 1 lần luôn cho lẹ, k cần mn giải hết đâu, biết bài nào thì giải giúp th

1 tháng 10 2018

A B C D M N

Qua C dựng đường thẳng song song với BD cắt đường thẳng AB tại điểm N.

Xét tứ giác DCNB có: CN // BD; BN // CD => Tứ giác DCNB là hình bình hành

=> DC = BN => (DC + AB)/2 = (BN + AB)/2 = AN/2 (1)

Ta có: M thuộc [AN]; AM = (DC + AB)/2                    (2)

(1); (2) => AM = AN/2 => M là trung điểm của AN  = >CM là trung tuyến \(\Delta\)ACN

Lại có: AC vuông góc BD; BD // CN => AC vuông góc CN (Qh //; vuông góc)

Xét \(\Delta\)ACN vuông đỉnh C có trung tuyến CM (cmt) => CM = AM => \(\Delta\)CAM cân tại M

=> ^MAC = ^MCA. Mà ^MAC = ^DCA (Do AB//CD) nên ^MCA = ^DCA 

Vậy nên  CA là phân giác ^MCD (đpcm).