K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

S = 1 x 2 + 2 x 3 + ... + 99 x 100

3S = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ..... + 99 x 100 x (101 - 98)

3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + .... + 99 x 100 x 101 - 98 x 99 x 100

3S = 99 x 100 x 101 = 999900

S = 999900 : 3 = 333300 

25 tháng 7 2016

Ta có : 

\(P=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)

\(P=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}....\frac{9898}{99.100}\)

\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{98.101}{99.100}\)

\(P=\frac{1.2.3...98}{2.3.4....99}.\frac{4.5.6....101}{3.4.5...100}\)

\(P=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)

Ủng hộ mk nha !!! ^_^

25 tháng 7 2016

\(P=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)

\(P=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{9898}{99.100}\)

\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{98.101}{99.100}\)

\(P=\frac{1.2.3...98}{2.3.4...99}.\frac{4.5.6...101}{3.4.5...100}\)

\(P=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)

6 tháng 3 2023

\(S=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\\ 3S=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot3\cdot4+...+3\cdot99\cdot100\\ 3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\\ 3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+....+99\cdot100\cdot101-98\cdot99\cdot100\\ 3S=99\cdot100\cdot101\\ S=\dfrac{99\cdot100\cdot101}{3}=33\cdot100\cdot101=3300\cdot101=333300\)

9 tháng 7 2017

\(P=\dfrac{\left(1+2+3+...+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63\cdot1,2-21\cdot3,6\right)}{1-2+3-4+5-6+...+99-100}\)

đề là vậy nhé mn

9 tháng 7 2017

để ý chút thấy liền ah : 63.1,2-21.3,6=63.1,2-21.3.1,2= 63.1,2- 63.1,2=0

=============================

Ta có P = \(\dfrac{\left(1+2+3+...+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+5-...+99-100}\)= \(\dfrac{\left(1+2+3+...+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)0}{1-2+3-4+5-...+99-100}\)= \(\dfrac{0}{1-2+3-4+5-6+...+99-100}=0\)

3 tháng 12 2017

Đặt A = 1 . 2 . 3 + 2 . 3 . 4 + ... + 98 . 99 . 100

\(\Rightarrow\) 4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . (5 - 1) +...+ 98 . 99 . 100 . (101 - 97)

\(\Rightarrow\) 4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . 5 - 2 . 3 . 4 . 1 + ... + 98 . 99 . 100 . 101 - 98 . 99 . 100 . 97

\(\Rightarrow\) 4A = 98 . 99 . 100 . 101

\(\Rightarrow\) 4A = 97990200

\(\Rightarrow\) A = 24497550

4 tháng 1 2019

Đặt A = 1 . 2 . 3 + 2 . 3 . 4 + ... + 98 . 99 . 100

=>4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . (5 - 1) +...+ 98 . 99 . 100 . (101 - 97)

=>4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . 5 - 2 . 3 . 4 . 1 + ... + 98 . 99 . 100 . 101 - 98 . 99 . 100 . 97

=>4A = 98 . 99 . 100 . 101 4A = 97990200

=>A = 24497550

Vậy A= 24497550

4 tháng 4 2016

Bạn xem lại đề câu a) cho rõ lại

Câu b) Tại x=2013 thì B=x2013-(x+1)x2012+(x+1)x2011-(x+1)x2010+...-(x+1)x2+(x+1)x-1

                                 = x2013-x2013-x2012+x2012+x2011-x2011-x2010+..-x3 - x2+x2+x-1

                                 = x-1 =  2012

27 tháng 3 2017

phải là so sánh A với 2 mới đúng

AH
Akai Haruma
Giáo viên
31 tháng 10

Lời giải:

$A=x^2+x^4+x^6+...+x^{100}$Nếu $x=\pm 1$ thì:

$A=1+1+....+1$

Số lần xuất hiện của 1 là: $(100-2):2+1=50$

$\Rightarrow A=50.1=50$

Nếu $x\neq \pm 1$ thì:

$A=x^2+x^4+x^6+...+x^{100}$

$x^2A=x^4+x^6+x^8+....+x^{102}$

$\Rightarrow x^2A-A=x^{102}-x^2$

$\Rightarrow A(x^2-1)=x^{102}-x^2$

$\Rightarrow A=\frac{x^{102}-x^2}{x^2-1}$

 

 

AH
Akai Haruma
Giáo viên
31 tháng 10

Lời giải:
$B=x+x^3+x^5+....+x^{99}$

Nếu $x=1$ thì:

$B=1+1+1+....+1$
Số lần xuất hiện của 1: $(99-1):2+1=50$

$\Rightarrow B=1.50=50$

Nếu $x=-1$ thì:

$B=(-1)+(-1)+...+(-1)$

Số lần xuất hiện của -1 là: $(99-1):2+1=50$

$\Rightarrow B=(-1).50=-50$

Nếu $x\neq \pm 1$

$B=x+x^3+x^5+....+x^{99}$

$x^2B=x^3+x^5+x^7+...+x^{101}$

$\Rightarrow x^2B-B=x^{101}-x$

$\Rightarrow B(x^2-1)=x^{101}-x$

$\Rightarrow B=\frac{x^{101}-x}{x^2-1}$