K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

4: \(tan\left(\dfrac{5}{2}\Omega\right)\) không có giá trị vì \(\dfrac{5}{2}\Omega=\dfrac{\Omega}{2}+2\cdot\Omega\)

1B

2:

Chu kì là \(T=2\Omega\)

3:

Chu kì là \(T=2\Omega\)

5: \(sinx=\dfrac{1}{2}\)

=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{6}+k2\Omega\\x=\dfrac{5}{6}\Omega+k2\Omega\end{matrix}\right.\)

TH1: \(x=\dfrac{\Omega}{6}+k2\Omega\)

\(x\in\left[0;2\Omega\right]\)

=>\(\dfrac{\Omega}{6}+k2\Omega\in\left[0;2\Omega\right]\)

=>\(2k+\dfrac{1}{6}\in\left[0;2\right]\)

=>\(2k\in\left[-\dfrac{1}{6};\dfrac{11}{6}\right]\)

=>\(k\in\left[-\dfrac{1}{12};\dfrac{11}{12}\right]\)

mà \(k\in Z\)

nên \(k\in\left\{0\right\}\)

TH2: \(x=\dfrac{5}{6}\Omega+k2\Omega\)

\(x\in\left[0;2\Omega\right]\)

=>\(\dfrac{5}{6}\Omega+k2\Omega\in\left[0;2\Omega\right]\)

=>\(k2\Omega\in\left[-\dfrac{5}{6}\Omega;\dfrac{7}{6}\Omega\right]\)

=>\(2k\in\left[-\dfrac{5}{6};\dfrac{7}{6}\right]\)

=>\(k\in\left[-\dfrac{5}{12};\dfrac{7}{12}\right]\)

mà k nguyên

nên k=0

Vậy: \(x\in\left\{\dfrac{\Omega}{6};\dfrac{5\Omega}{6}\right\}\)

Số phát biểu đúng 1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho 2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy 3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường...
Đọc tiếp

Số phát biểu đúng

1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho

2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy

3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường thẳng đó hoặc trùng với một trong 2 đường thẳng đó

4.     2 đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau

5.     Nếu đường thẳng d không nằm trong mặt phẳng ( ) và d song song với đường thẳng d’ nằm trong ( ) thì d song song với ( )

6.     Cho đường thẳng a song song với mặt phẳng . Nếu mặt phẳng  chứa a và cắt  theo giao tuyến b thì b song song với a

7.     Nếu 2 mặt phẳng cùng song song với 1 đường thẳng thì giao tuyến của chúng ( nếu có ) cũng song song với đường thẳng đó

     8. Cho 2 đường thẳng chéo nhau. Có vô số mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.

A. 8

B. 7

C. 6

D. 5

1
5 tháng 2 2018

Đáp án C

2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau

8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia

NV
22 tháng 1

A. Mệnh đề đảo sai (2 đường cùng mặt chưa chắc song song)

B. Sai, ví dụ 2 đường thẳng song song 

C. Đúng

D. Sai, 2 đường thẳng song song (ko có quy định nào bắt 1 đường thẳng chỉ nằm trên 1 mặt)

13 tháng 10 2019

Đáp án D

20 tháng 5 2018

Khẳng định (1) đúng vì khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại (xem mục c). Tính chất của khoảng cách giữa hai đường thẳng chéo nhau (Bài 5 – chương III).

Khẳng định (2) sai vì qua một điểm có vô số mặt phẳng vuông góc với một mặt phẳng cho trước.

Khẳng định (3) sai vì trong trường hợp đường thẳng vuông góc với mặt phẳng thì ta có vô số mặt phẳng vuông góc với mặt phẳng cho trước vì bất kì mặt phẳng nào chứa đường thẳng cũng đều vuông góc với mặt phẳng cho trước. Để có khẳng định đúng ta phải nói: Qua một đường thẳng không vuông góc với một mặt phẳng có duy nhất một mặt phẳng vuông góc với mặt phẳng đã cho.

Khẳng định (4) sai vì đường vuông góc chung của hai đường thẳng phải cắt cả hai đường ấy.

Vậy có một khẳng định đúng.

ĐÁP ÁN A

19 tháng 12 2017

Đáp án B

Các cách xác định mặt phẳng đúng: 2; 4 ; 8

1. Đi qua 3 điểm phân biệt không thẳng hàng

3. Trong trường hợp 2 đường thẳng chéo nhau thì không thể xác định được mặt phẳng

5. Song song với 2 đường thẳng cắt nhau  Có vô số mặt phẳng như vậy.

Phương pháp xác định mặt phẳng chỉ đúng khi mặt phẳng này đi qua 1 điểm  cho trước

6. Song song với 2 đường thẳng chéo nhau  Có vô số mặt phẳng như vậy

Phương pháp xác định mặt phẳng chỉ đúng khi mặt phẳng này đi qua 1 điểm  cho trước

7. Đi qua 1 điểm và song song với một đường thẳng cho trước.  Có vô số mặt phẳng như vậy

31 tháng 12 2018

a) Đúng

b) Đúng

c) Sai

d) Sai

e) Sai

f) Đúng

Mình nghĩ chọn D

8 tháng 10 2023

Nguyễn Lê Phước Thịnh                                                         , ý B sai chỗ nào v bn??

Chọn A