K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

\(a,=\sqrt{3}+4\sqrt{3}+20\sqrt{3}-10\sqrt{3}=15\sqrt{3}\\ b,=4\sqrt{5}+\sqrt{5}-1-\dfrac{20\left(\sqrt{5}-1\right)}{4}\\ =5\sqrt{5}-1-5\sqrt{5}+5=4\\ c,=\dfrac{6\sqrt{13}+6+6\sqrt{13}-6}{\left(\sqrt{13}-1\right)\left(\sqrt{13}+1\right)}=\dfrac{12\sqrt{13}}{12}=\sqrt{13}\\ d,=\left(\sin^238^0+\cos^238^0\right)+\left(\tan67^0-\tan67^0\right)=1+0=1\)

30 tháng 10 2021

a: \(=\sqrt{3}+4\sqrt{3}+4\cdot5\sqrt{3}-10\sqrt{3}\)

\(=15\sqrt{3}\)

b: \(=2\cdot2\sqrt{5}+\sqrt{5}-1-5+5\sqrt{5}\)

=-6

31 tháng 10 2021

a) \(\Leftrightarrow A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)

b) \(\Leftrightarrow B=\sqrt{7-2\sqrt{12}}+\sqrt{12+2\sqrt{27}}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}=2-\sqrt{3}+3+\sqrt{3}=5\)

c) \(\Leftrightarrow C=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{6}{4}=\dfrac{3}{2}\)

d) \(\Leftrightarrow D=3-\left(-2\right)-5=0\)

19 tháng 10 2021

\(a,=\sqrt{5}\left(2\sqrt{5}-3\right)+3\sqrt{5}=10-3\sqrt{5}+3\sqrt{5}=10\\ b,=5-\sqrt{3}-\left(2-\sqrt{3}\right)=3\\ c,=\dfrac{2\left(\sqrt{5}-1\right)}{4}-\dfrac{2\left(3+\sqrt{5}\right)}{4}=\dfrac{2\sqrt{5}-2-6-2\sqrt{5}}{4}=\dfrac{-8}{4}=-2\)

18 tháng 9 2021

a) \(\dfrac{12}{1+\sqrt{5}}+\dfrac{15}{\sqrt{5}}-\dfrac{\sqrt{20}-5}{2-\sqrt{5}}\)

=\(\dfrac{12\left(1-\sqrt{5}\right)}{-4}+\dfrac{15\sqrt{5}}{5}-\dfrac{\left(\sqrt{20}-5\right)\left(2+\sqrt{5}\right)}{-1}\)

=\(-3+3\sqrt{5}-\sqrt{5}+3\sqrt{5}+4\sqrt{5}+10-10-5\sqrt{5}\)

=\(5\sqrt{5}-3\)

b)\(\dfrac{2\sqrt{x}}{\sqrt{x}-1}-\dfrac{3x}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}}\)

=\(\dfrac{2x-3x+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

=\(\dfrac{-x+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

21 tháng 12 2023

Bài 1:

a: \(5\sqrt{8}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)

\(=5\cdot2\sqrt{2}-4\cdot3\sqrt{3}-2\cdot5\sqrt{3}+6\sqrt{3}\)

\(=10\sqrt{2}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}\)

\(=10\sqrt{2}-16\sqrt{3}\)

b: \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(1-\sqrt{6}\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|1-\sqrt{6}\right|\)

\(=3-\sqrt{6}+\sqrt{6}-1\)

=3-1=2

c: \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\dfrac{1}{4+\sqrt{15}}\)

\(=\dfrac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}+\dfrac{1\left(4-\sqrt{15}\right)}{16-15}\)

\(=\sqrt{15}+4-\sqrt{15}=4\)

d: \(\dfrac{2\sqrt{3-\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)

\(=\dfrac{\sqrt{3-\sqrt{5}}\cdot\sqrt{2}\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}\left(\sqrt{3}+1\right)}{2\left(\sqrt{3}+1\right)}\)

\(=\dfrac{\sqrt{6-2\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}}{2}\)

\(=\sqrt{\left(\sqrt{5}-1\right)^2}\cdot\dfrac{\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}}{2}\)

\(=3+\sqrt{5}-\dfrac{\sqrt{5}}{2}=3+\dfrac{\sqrt{5}}{2}\)

Bài 2:

Vẽ đồ thị:

loading...

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x-4=-3x+3\)

=>\(\dfrac{1}{2}x+3x=3+4\)

=>\(\dfrac{7}{2}x=7\)

=>x=2

Thay x=2 vào y=-3x+3, ta được:

\(y=-3\cdot2+3=-3\)

Vậy: (d1) cắt (d2) tại A(2;-3)

a) Ta có: \(-\dfrac{3}{2}\sqrt{9-4\sqrt{5}}+\sqrt{\left(-4\right)^2\cdot\left(1+\sqrt{5}\right)^2}\)

\(=\dfrac{-3}{2}\left(\sqrt{5}-2\right)+4\cdot\left(\sqrt{5}+1\right)\)

\(=\dfrac{-3}{2}\sqrt{5}+3+4\sqrt{5}+4\)

\(=\dfrac{5}{2}\sqrt{5}+7\)

b) Ta có: \(\left(1+\dfrac{1}{\tan^225^0}\right)\cdot\sin^225^0-\tan55^0\cdot\tan35^0\)

\(=\dfrac{\tan^225^0+1}{\tan^225^0}\cdot\sin25^0-1\)

\(=\left(\dfrac{\sin^225^0}{\cos^225^0}+1\right)\cdot\dfrac{\cos^225^0}{\sin^225^0}\cdot\sin25^0-1\)

\(=\dfrac{\sin^225^0+\cos^225^0}{\cos^225^0}\cdot\dfrac{\cos^225^0}{\sin25^0}-1\)

\(=\dfrac{1}{\sin25^0}-1\)

\(=\dfrac{1-\sin25^0}{\sin25^0}\)

a: Ta có: \(A=\left(\dfrac{6+\sqrt{20}}{3+\sqrt{5}}+\dfrac{\sqrt{14}-\sqrt{2}}{\sqrt{7}-1}\right):\left(2+\sqrt{2}\right)\)

\(=\left(2+\sqrt{2}\right):\left(2+\sqrt{2}\right)\)

=1

b: Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-\dfrac{11}{2\sqrt{3}+1}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+1\)

=1

23 tháng 11 2021

\(a,=\sqrt{5}-4\sqrt{5}-12\sqrt{5}=-15\sqrt{5}\\ b,=2\sqrt{3}-\dfrac{2+\sqrt{3}}{1}=2\sqrt{3}-2-\sqrt{3}=\sqrt{3}-2\\ c,=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}}\\ =\dfrac{2\left(x+1\right)}{2\sqrt{x}}=\dfrac{x+1}{\sqrt{x}}\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Bài 1:

a/

$\sqrt{(\sqrt{7}-4)^2}+\sqrt{8-2\sqrt{7}}$

$=|\sqrt{7}-4|+\sqrt{7+1-2\sqrt{7}}=|\sqrt{7}-4|+\sqrt{(\sqrt{7}-1)^2}$

$=4-\sqrt{7}+|\sqrt{7}-1|=4-\sqrt{7}+\sqrt{7}-1=3$

b/

\(\sqrt{(\sqrt{5}-2)^2}+\sqrt{6+2\sqrt{5}}\\ =|\sqrt{5}-2|+\sqrt{5+1+2\sqrt{5}}\\ =\sqrt{5}-2+\sqrt{(\sqrt{5}+1)^2}\\ =\sqrt{5}-2+|\sqrt{5}+1|=\sqrt{5}-2+\sqrt{5}+1=2\sqrt{5}-1\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Bài 2:

a. $=\sqrt{5}+\sqrt{5}+\sqrt{5}=3\sqrt{5}$

b. $=\frac{\sqrt{2}}{2}+\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{2}$

$=\frac{\sqrt{2}+3\sqrt{2}+5\sqrt{2}}{2}=\frac{9\sqrt{2}}{2}$

c.

$=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}$

$=-\sqrt{5}+15\sqrt{2}$
d.

$=0,1.10\sqrt{2}+2.\frac{\sqrt{2}}{5}+0,4.5\sqrt{2}$

$=\sqrt{2}+0,4\sqrt{2}+2\sqrt{2}$

$=\sqrt{2}(1+0,4+2)=3,4\sqrt{2}$