K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

bạn lấy vd từng số ra nha! chúc học tốt

7 tháng 10 2018

Khoảng cách giữa 2 số lẻ liên tiếp là 2

Số lẻ đầu tiên là 1 thì số lẻ thứ n là:

             \(1+\left(n-1\right).2=2n-1\)

Khi đó: tổng n STN lẻ liên tiếp kể từ 1 là:

      \(1+3+5+...+\left(2n-1\right)\)

\(=\left(1+2n-1\right).n:2\)

\(=2n^2:2=n^2\)

Vậy tổng của n STN lẻ liên tiếp là số chính phương.

Chúc em học tốt.

19 tháng 7 2016

đây là câu hỏi trong chuyên đề SCP ở HỌC BÀI mà

19 tháng 7 2016

Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương

K nhak ^_^ ^_^ ^_^

19 tháng 7 2021

1) b+5:7 ( dấu chia hết nha tại bàn phím k có dấu này nên k gõ đc)          2) 2k+1;2k+3 ; 2k+5                3) bốn số lẻ liên tiếp sẽ có dạng là: 2k+1; 2k+3;2k+5;2k+7 =) tổng của 4 số lẻ liên tiếp là:  2k+1+2k+3+2k+5+2k+7=8k+16 . mà 8k chia hết cho 8; 18 chia hết cho 8=)tổng của  2k+1; 2k+3;2k+5;2k+7 chia hết cho 8 hay tổng của 4 số lẻ liên tiếp luôn chia hết cho 8 (đpcm)   4) bốn số chẵn liên tiếp sẽ có dạng là : 2k;2k+2;2k+4;2k+6=) tổng của 4 số chẵn liên tiếp là 8k+12 mà 8k chia hết cho 8 nhưng 12 không chia hết cho 8 nên tổng của 2k:2k+2;2k+4;2k+6 không chia hết cho 8 hay tổng 4 số chẵn liên tiếp k chia hết cho 8(đpcm) 

Ta gọi 2 số lẻ liên tiếp đó là n+1;n+3

=> Hiệu hai bình phương hai số đó là:

(n+3)2-(n+1)2

=(n+3-n-1).(n+3+n+1)

=2.(2n+4)

=2.(2(n+2))

=2.2.(n+2)

=4.(n+2)

10 tháng 3 2021

Gọi n và n+2 là 2 số lẻ liên tiếp\(\Rightarrow a=n^2\) và\(b=\left(n+2\right)^2\)

\(\Rightarrow A=n^2\left(n+2\right)^2-n^2-\left(n+2\right)^2+1\)

\(A=\left(n+2\right)^2\left(n^2-1\right)-\left(n^2-1\right)=\left(n^2-1\right)\left[\left(n+2\right)^2-1\right]\)

\(A=\left(n-1\right)\left(n+1\right)\left[\left(n+2\right)-1\right]\left[\left(n+2\right)+1\right]\)

\(A=\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+3\right)\)

Ta thấy \(\left(n-1\right)\left(n+1\right)\left(n+3\right)\) là tích của 3 số chẵn liên tiếp

Ta chứng minh bài toán phụ là tích của 3 số chẵn liên tiếp thì chia hết cho 48

Gọi 3 số chẵn liên tiếp lần lượt là 2k-2;2k;2k+2

\(\Rightarrow B=\left(2k-2\right)2k\left(2k+2\right)=2\left(k-1\right).2k.2\left(k+1\right)=8\left(k-1\right)k\left(k+1\right)\)

Ta thấy \(B⋮2;B⋮8\)

(k-1).k.(k+1) là 3 số tự nhiên liên tiếp nên tích chia hết cho 3 \(\Rightarrow B⋮3\)

\(\Rightarrow B⋮2.3.8\Rightarrow B⋮48\)

\(\Rightarrow A⋮48\)