Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x : y : z= 3:4:5`
`=> x/3 = y/4 = z/5 <=> x^2/9 = y^2/16 = z^2/25`
Áp dụng dãy tỉ số bằng nhau:
`x^2/9 = y^2/16 = z^2/25 = (2x^2 + 2y^2 - 3z^2)/(18 + 32 - 75) = -100/-25 = 4`.
`=> {(x^2/9 = 4 => x = +-6), (y^2/16 =4 <=> x = +-8), (z^2/25 = 4 => z = +-10):}`
Vậy ...
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
mình làm câu b nhé
2x-2/4=3y-6/9=z-3/4
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
=2x-2+3y-6-z-3/4+9-5
=(2x+3y-z)-(2+6-3)/9
=50-5/9=45/9=5
mình gợi ý tới đây thui , còn lại bạn làm tiếp nhé
x : y : z = 3 : 4 : 5
=>x/3=y/4=z/5 => x2/9=y2/16=z2/5 = 2x2=2x2/18=2y2/32=3z2/75
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
suy ra 2x2/18=4 =>x2=36 =>x=6 ; x=-6
2y2/32=4 =>x2=128 => y=8 ; y=-8
3x2/75=4 =>z2=100 =>z=10 ;z=-10
Ta có: x : y : z = 3 : 4 : 5
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Mà 2x2 + 2y2 - 3z2 = -100
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
=> \(x^2=4.3=12\Rightarrow x=\sqrt{12}\)
\(y^2=4.4=16\Rightarrow x=4\)
\(z^2=4.5=20\Rightarrow z=\sqrt{20}\)
Vì x:y:z = 3:4:5
=>x/3=y/4=z/5
=>2x^2/2.3^2= 2.y^2/2.4^2=3.z^2/3.5^2
=>2.x^2/6^2=2.y^2/8^2=3.z^2/15^2
Áp dụng tính chất dãy Tỉ số = nhau. Ta có:
2.x^2+2y^2-3z^2/18+32-75= -100/-25= 4
=>x/3=4=>x= 12.
=>y/4=4=>y= 16.
=>z/5= 4=>z=20.
Vậy........
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
1.
Ta có: \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}.\)
=> \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{25}.\)
=> \(\frac{2x^2}{8}=\frac{2y^2}{32}=\frac{3z^2}{75}\) và \(2x^2+2y^2-3z^2=-100.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2x^2}{8}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{8+32-75}=\frac{-100}{-35}=\frac{20}{7}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x^2}{4}=\frac{20}{7}\Rightarrow x^2=\frac{80}{7}\Rightarrow\left[{}\begin{matrix}x=\sqrt{\frac{80}{7}}\\x=-\sqrt{\frac{80}{7}}\end{matrix}\right.\\\frac{y^2}{16}=\frac{20}{7}\Rightarrow y^2=\frac{320}{7}\Rightarrow\left[{}\begin{matrix}y=\sqrt{\frac{320}{7}}\\y=-\sqrt{\frac{320}{7}}\end{matrix}\right.\\\frac{z^2}{25}=\frac{20}{7}\Rightarrow z^2=\frac{500}{7}\Rightarrow\left[{}\begin{matrix}z=\sqrt{\frac{500}{7}}\\z=-\sqrt{\frac{500}{7}}\end{matrix}\right.\end{matrix}\right.\)
Vậy.......
Chúc bạn học tốt!
1,
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{25}=\frac{2x^2+2y^2-3z^2}{2\cdot4+2\cdot16-3\cdot25}=\frac{-100}{-35}=\frac{20}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x^2}{4}=\frac{20}{7}\\\frac{y^2}{16}=\frac{20}{7}\\\frac{z^2}{25}=\frac{20}{7}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=\frac{20}{7}\cdot4=\frac{80}{7}\\y^2=\frac{20}{7}\cdot16=\frac{320}{7}\\z^2=\frac{20}{7}\cdot25=\frac{500}{7}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\frac{4\sqrt{35}}{7}\\x=\frac{-4\sqrt{35}}{7}\end{matrix}\right.\\\left[{}\begin{matrix}y=\frac{8\sqrt{35}}{7}\\y=\frac{-8\sqrt{35}}{7}\end{matrix}\right.\\\left[{}\begin{matrix}z=\frac{10\sqrt{35}}{7}\\z=\frac{-10\sqrt{35}}{7}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)\in\left\{\left(\frac{4\sqrt{35}}{7};\frac{8\sqrt{35}}{7};\frac{10\sqrt{35}}{7}\right);\left(\frac{-4\sqrt{35}}{7};\frac{-8\sqrt{35}}{7};\frac{-10\sqrt{35}}{7}\right)\right\}\)
2,
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\\ \Rightarrow\frac{x^3}{64}=\frac{y^3}{216}=\frac{z^3}{729}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^3}{64}=\frac{y^3}{216}=\frac{z^3}{729}=\frac{x^3+y^3+z^3}{64+216+729}=\frac{-1009}{1009}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x^3}{64}=-1\\\frac{y^3}{216}=-1\\\frac{z^3}{729}=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3=-64\\y^3=-216\\z^3=-729\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-4\\y=-6\\z=-9\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(-4;-6;-9\right)\)