K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

a) \(\dfrac{2}{3}x.\left(x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=0\\x-8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)

Vậy x=0 ; x=8

26 tháng 10 2017

nên x=0 hoặc x-8=0

x-8=0

x=8

vậy x thuộc 0 và 8

\(\left|x+\dfrac{1}{2}\right|+\left|x-y+z\right|+\left|y+\dfrac{1}{3}\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}=0\\y+\dfrac{1}{3}=0\\x-y+z=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{3}\\z=-x+y=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}\end{matrix}\right.\)

\(A=2x+y+z=-1-\dfrac{1}{3}+\dfrac{1}{6}=-\dfrac{4}{3}+\dfrac{1}{6}=-\dfrac{7}{6}\)

AH
Akai Haruma
Giáo viên
20 tháng 10 2023

Lời giải:

Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$

$\Rightarrow x=2018a; y=2019a; z=2020a$

$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$

Mặt khác:

$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$

Từ $(1); (2)$ ta có đpcm.

\(\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{3}=\dfrac{23}{12}\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{23}{12}+\dfrac{1}{3}=\dfrac{9}{4}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{3}{2}\\x-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}+\dfrac{1}{2}=2\\x=-\dfrac{3}{2}+\dfrac{1}{2}=-1\end{matrix}\right.\)

 

10 tháng 8 2023

\(\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{3}=\dfrac{23}{12}\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{23}{12}+\dfrac{1}{3}\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{9}{4}=\left(\dfrac{3}{2}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{3}{2}\\x-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

24 tháng 8 2023

Hỏi rồi àm sao hỏi lại vậy

24 tháng 8 2023

\(\left(x-\dfrac{1}{5}\right):\left(x-1\dfrac{6}{7}\right)< 0\)

\(\Rightarrow\left(x-\dfrac{1}{5}\right):\left(x-\dfrac{13}{7}\right)< 0\)

\(TH1:\left\{{}\begin{matrix}x-\dfrac{1}{5}>0\\x-\dfrac{13}{7}< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{5}\\x< \dfrac{13}{7}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{5}< x< \dfrac{13}{7}\)

 

\(TH2:\left\{{}\begin{matrix}x-\dfrac{1}{5}< 0\\x-\dfrac{13}{7}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{1}{5}\\x>\dfrac{13}{7}\end{matrix}\right.\) (vô lý nên loại)

Vậy \(\dfrac{1}{5}< x< \dfrac{13}{7}\) thỏa mãn đề bài

1 tháng 9 2023

a) \(a\left(b+1\right)=3\left(a;b\inℤ\right)\)

\(\Rightarrow a;\left(b+1\right)\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Rightarrow\left(a;b\right)\in\left\{\left(-1;-4\right);\left(1;2\right);\left(-3;-2\right);\left(3;0\right)\right\}\)

b) \(2n+7⋮n+1\left(n\inℤ\right)\)

\(\Rightarrow2n+7-2\left(n+1\right)⋮n+1\)

\(\Rightarrow2n+7-2n-2⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-2;0;-6;4\right\}\)

c) \(xy+x-y=6\left(x;y\inℤ\right)\)

\(\Rightarrow x\left(y+1\right)-y-1+1=6\)

\(\Rightarrow x\left(y+1\right)-\left(y+1\right)=5\)

\(\Rightarrow\left(x-1\right)\left(y+1\right)=5\)

\(\Rightarrow\left(x-1\right);\left(y+1\right)\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(-0;-6\right);\left(2;4\right);\left(-4;-2\right);\left(6;0\right)\right\}\)

25 tháng 8 2023

a) \(\dfrac{x-4}{15}=\dfrac{5}{3}\)

\(\Leftrightarrow x-4=15.\dfrac{5}{3}\)

\(\Leftrightarrow x-4=25\)

\(\Leftrightarrow x=29\) thỏa \(x\inℤ\)

b) \(\dfrac{x}{4}=\dfrac{18}{x+1}\left(x\ne-1\right)\)

\(\Leftrightarrow x\left(x+1\right)=18.4\)

\(\Leftrightarrow x\left(x+1\right)=72\)

vì \(72=8.9=\left(-8\right).\left(-9\right)\)

\(\Leftrightarrow x\in\left\{8;-9\right\}\left(x\inℤ\right)\)

c) \(2x+3⋮x+4\) \(\left(x\ne-4;x\inℤ\right)\)

\(\Leftrightarrow2x+3-2\left(x+4\right)⋮x+4\)

\(\Leftrightarrow2x+3-2x-8⋮x+4\)

\(\Leftrightarrow-5⋮x+4\)

\(\Leftrightarrow x+4\in\left\{-1;1;-5;5\right\}\)

\(\Leftrightarrow x\in\left\{-5;-3;-9;1\right\}\)

4 tháng 3 2018

mấy bạn giỏi toán ơi giúp mk vs

10 tháng 3 2018

Nguyễn Thanh Hằng Nhã Doanh ngonhuminh nguyen thi vang mấy ban giup mk voihehe

14 tháng 8 2017

Ta có:\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+x\right)}{x+y+z}=2\)(theo tính chất của DTSBN)

Suy ra:\(\dfrac{1}{x+y+z}=2\)=>x+y+z=\(\dfrac{1}{2}\)

=>y+z=\(\dfrac{1}{2}\)-x

Tương tự, ta có được:

x+z=\(\dfrac{1}{2}-y\)

x+y=\(\dfrac{1}{2}-z\)

Thay các kết quả vừa tìm được, ta có:

\(\dfrac{0,5-x+1}{x}=\dfrac{0,5-y+2}{y}\dfrac{0,5-z-3}{z}=2\)=>\(\dfrac{1,5-x}{x}=\dfrac{2,5-y}{y}=\dfrac{-2,5-z}{z}=2\)

=>x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)

Thay x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)vào biểu thức A, ta có:

A=2018.\(\dfrac{1}{2}\)+\(\left(\dfrac{5}{6}\right)^{2017}\)+\(\left(\dfrac{-5}{6}\right)^{2017}\)

=>A=1009+\(\left[\left(\dfrac{5}{6}\right)^{2017}+\left(\dfrac{-5}{6}\right)^{2017}\right]\)

=>A=1009+0

=>A=1009

Vậy giá trị của biểu thức A là 1009

14 tháng 8 2017

Thanks crush nka !!

13 tháng 9 2016

Do \(\left(x-7\right)^8\ge0;\left|y^2-4\right|\ge0\)

 \(\Rightarrow\left(x-7\right)^8+\left|y^2-4\right|\ge0\)

Mà theo đề bài: (x - 7)8 + |y2 - 4| = 0

=> \(\begin{cases}\left(x-7\right)^8=0\\\left|y^2-4\right|=0\end{cases}\)=> \(\begin{cases}x-7=0\\y^2-4=0\end{cases}\)=> \(\begin{cases}x=7\\y^2=4\end{cases}\)=> \(\begin{cases}x=7\\y\in\left\{2;-2\right\}\end{cases}\)