Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{2}-\left|2-3x\right|=\sqrt{\dfrac{19}{16}}-\sqrt{\left(-0,75\right)^2}\\ \Rightarrow\dfrac{1}{2}-\left|2-3x\right|=\dfrac{\sqrt{19}}{4}-\dfrac{3}{4}\\ \Rightarrow\left|2-3x\right|=\dfrac{1}{2}-\dfrac{\sqrt{19}-3}{4}\)
\(\Rightarrow\left|2-3x\right|=\dfrac{5-\sqrt{19}}{4}\)
\(TH_1:x\le\dfrac{2}{3}\\ 2-3x=\dfrac{5-\sqrt{19}}{4}\\ \Rightarrow3x=\dfrac{3+\sqrt{19}}{4}\\ \Rightarrow x=\dfrac{3+\sqrt{19}}{12}\left(tm\right)\)
\(TH_2:x>\dfrac{2}{3}\\ 3x-2=\dfrac{5-\sqrt{19}}{4}\\ \Rightarrow3x=\dfrac{13-\sqrt{19}}{4}\\ \Rightarrow x=\dfrac{13-\sqrt{19}}{12}\left(tm\right)\)
Vậy \(x\in\left\{\dfrac{3+\sqrt{19}}{12};\dfrac{13-\sqrt{19}}{12}\right\}\)
\(\dfrac{1}{2}-\left|2-3x\right|=\sqrt[]{\dfrac{19}{16}}-\sqrt[]{\left(-0,75\right)^2}\)
\(\Rightarrow\dfrac{1}{2}-\left|2-3x\right|=\dfrac{\sqrt[]{19}}{4}-0,75\)
\(\Rightarrow\dfrac{1}{2}-\left|2-3x\right|=\dfrac{\sqrt[]{19}}{4}-\dfrac{3}{4}\)
\(\Rightarrow\left|2-3x\right|=\dfrac{1}{2}-\dfrac{\sqrt[]{19}}{4}+\dfrac{3}{4}\)
\(\Rightarrow\left|2-3x\right|=\dfrac{5-\sqrt[]{19}}{4}\)
\(\Rightarrow\left[{}\begin{matrix}2-3x=\dfrac{5-\sqrt[]{19}}{4}\\2-3x=\dfrac{-5+\sqrt[]{19}}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=2-\dfrac{5-\sqrt[]{19}}{4}\\3x=2-\dfrac{\sqrt[]{19}-5}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=\dfrac{3+\sqrt[]{19}}{4}\\3x=\dfrac{13-\sqrt[]{19}}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt[]{19}}{12}\\x=\dfrac{13-\sqrt[]{19}}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left(\dfrac{13}{4}-x\right)\cdot\dfrac{101}{25}-\dfrac{1213}{100}=2\cdot\left[\left(x-\dfrac{10}{7}\right)\cdot\dfrac{49}{50}+\dfrac{2}{5}\right]\)
\(\Leftrightarrow\left(\dfrac{13}{4}-x\right)\cdot\dfrac{101}{25}=\dfrac{49}{25}\left(x-\dfrac{10}{7}\right)+\dfrac{4}{5}+\dfrac{1213}{100}\)
\(\Leftrightarrow\dfrac{1313}{100}-\dfrac{101}{25}x=\dfrac{49}{25}x-\dfrac{490}{175}+\dfrac{1293}{100}\)
=>-6x=13/5
hay x=-13/30
a: =>4x-6-9=5-3x-3
=>4x-15=-3x+2
=>7x=17
hay x=17/7
b: \(\Leftrightarrow\dfrac{2}{3x}-\dfrac{1}{4}=\dfrac{4}{5}-\dfrac{7}{x}+2\)
=>2/3x+21/3x=4/5+2+1/4=61/20
=>23/3x=61/20
=>3x=23:61/20=460/61
hay x=460/183
Bài 2:
\(\left(\dfrac{2}{5}\right)^x>\left(\dfrac{5}{2}\right)^{-3}.\left(\dfrac{-2}{5}\right)^2\)
\(\Rightarrow\left(\dfrac{2}{5}\right)^x>\left(\dfrac{2}{5}\right)^3.\left(\dfrac{2}{5}\right)^2\)
\(\Rightarrow\left(\dfrac{2}{5}\right)^x>\left(\dfrac{2}{5}\right)^5\)
Vì \(\dfrac{2}{5}\ne\pm1;\dfrac{2}{5}\ne0\) nên \(x>5\)
Vậy \(x>5\) thoả mãn yêu cầu đề bài.
Chúc bạn học tốt!!!
Bài 1:
\(C=\left(\dfrac{1}{2^2-1}\right)\left(\dfrac{1}{3^2-1}\right).....\left(\dfrac{1}{100^2-1}\right)\)
\(C=\left(\dfrac{1}{\left(2-1\right)\left(2+1\right)}\right)\left(\dfrac{1}{\left(3-1\right)\left(3+1\right)}\right).....\left(\dfrac{1}{\left(100-1\right)\left(100+1\right)}\right)\)
\(C=\dfrac{1}{1.3}\dfrac{1}{2.4}.....\dfrac{1}{99.101}=\dfrac{1}{101!}\)
Chúc bạn học tốt!!!
a: Ta có: \(\dfrac{x+1}{2}=\dfrac{2}{x+1}\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
b: Ta có: \(\dfrac{\left(x-2\right)^2}{7}=\dfrac{49}{\left(x-2\right)}\)
\(\Leftrightarrow x-2=7\)
hay x=9
1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)
=>4x=18
hay x=9/2
2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)
=>4x=108
hay x=27
3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)
=>4x=12
hay x=3
\(\left(x-\dfrac{1}{5}\right):\left(x-1\dfrac{6}{7}\right)< 0\)
\(\Rightarrow\left(x-\dfrac{1}{5}\right):\left(x-\dfrac{13}{7}\right)< 0\)
\(TH1:\left\{{}\begin{matrix}x-\dfrac{1}{5}>0\\x-\dfrac{13}{7}< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{5}\\x< \dfrac{13}{7}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{5}< x< \dfrac{13}{7}\)
\(TH2:\left\{{}\begin{matrix}x-\dfrac{1}{5}< 0\\x-\dfrac{13}{7}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{1}{5}\\x>\dfrac{13}{7}\end{matrix}\right.\) (vô lý nên loại)
Vậy \(\dfrac{1}{5}< x< \dfrac{13}{7}\) thỏa mãn đề bài
a) \(\dfrac{2}{3}x-\dfrac{1}{2}x=\left(-\dfrac{7}{12}\right)\cdot1\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{6}x=\left(-\dfrac{7}{12}\right)\cdot\dfrac{7}{5}\)
\(\Rightarrow\dfrac{1}{6}x=-\dfrac{49}{60}\)
\(\Rightarrow x=-\dfrac{49}{60}:\dfrac{1}{6}\)
\(\Rightarrow x=-\dfrac{49}{10}\)
b) \(\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\dfrac{9}{4}\)
\(\Rightarrow\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\left(\pm\dfrac{3}{2}\right)^2\)
+) \(\dfrac{1}{5}-\dfrac{3}{2}x=\dfrac{3}{2}\)
\(\Rightarrow\dfrac{3}{2}x=\dfrac{1}{5}-\dfrac{3}{2}\)
\(\Rightarrow\dfrac{3}{2}x=-\dfrac{13}{10}\)
\(\Rightarrow x=-\dfrac{13}{10}:\dfrac{3}{2}\)
\(\Rightarrow x=-\dfrac{13}{15}\)
+) \(\left(1,25-\dfrac{4}{5}x\right)^3=-125\)
\(\Rightarrow\left(\dfrac{5}{4}-\dfrac{4}{5}x\right)^3=\left(-5\right)^3\)
\(\Rightarrow\dfrac{5}{4}-\dfrac{4}{5}x=-5\)
\(\Rightarrow\dfrac{4}{5}x=\dfrac{5}{4}+5\)
\(\Rightarrow\dfrac{4}{5}x=\dfrac{25}{4}\)
\(\Rightarrow x=\dfrac{25}{4}:\dfrac{4}{5}\)
\(\Rightarrow x=\dfrac{125}{16}\)
a, \(\dfrac{2}{3}\)\(x\) - \(\dfrac{1}{2}\)\(x\) = (- \(\dfrac{7}{12}\)). 1\(\dfrac{2}{5}\)
\(x\).(\(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)) = (- \(\dfrac{7}{12}\)) . \(\dfrac{7}{5}\)
\(x\). \(\dfrac{1}{6}\) = - \(\dfrac{49}{60}\)
\(x\) = - \(\dfrac{49}{60}\).6
\(x\) = -\(\dfrac{49}{10}\)
Lời giải:
Đặt $|x+2|=a$ với $a\geq 0$. Khi đó:
$A=\frac{3+2a}{1+a}=\frac{2(1+a)+1}{1+a}=2+\frac{1}{1+a}$
Vì $a\geq 0$ với mọi $x$ nên $1+a\geq 1$
$\Rightarrow A=2+\frac{1}{1+a}\leq 2+\frac{1}{1}=3$
Vậy $A_{\max}=3$. Giá trị này đạt tại $a=0\Leftrightarrow |x+2|=0\Leftrightarrow x=-2$
\(\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{3}=\dfrac{23}{12}\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{23}{12}+\dfrac{1}{3}=\dfrac{9}{4}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{3}{2}\\x-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}+\dfrac{1}{2}=2\\x=-\dfrac{3}{2}+\dfrac{1}{2}=-1\end{matrix}\right.\)
\(\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{3}=\dfrac{23}{12}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{23}{12}+\dfrac{1}{3}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{9}{4}=\left(\dfrac{3}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{3}{2}\\x-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)