Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu b giả sử x>_y>_z>_t>_1 (>_ lớn hơn hoặc =)
khi do 2xyzt=5(x+y+z+t)+10 _< 20x+10
=>xyzt _<10x+5 _<15x=>yzt_<15=>t^3_<15=>t_<2(vi t la nguyen duong)
voi t=1 ta co 2xyz=5(x+y+z)+15=>2yz _<30=>z_<3
roi tiep tuc thu cac truong hop can lai
voi t=2 lam tuong tu
phần b của bạn hình như đề bài sai nếu là +0 thì có ý nghĩa j phải là +10 chứ
Áp dụng BĐT \(\frac{a}{b+c}\le\frac{1}{4}\left(\frac{a}{b}+\frac{a}{c}\right)\forall a;b;c>0\) ta có :
\(\frac{x}{2x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
Tương tự ta cũng có : \(\hept{\begin{cases}\frac{y}{2y+z+x}\le\frac{1}{4}\left(\frac{y}{y+z}+\frac{y}{x+y}\right)\\\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{z+y}\right)\end{cases}}\)
Cộng các vế tương ứng của các BĐT vừa CM đc ta có :
\(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{x+z}{x+z}\right)=\frac{3}{4}\)
Hay \(VT\le VP\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z\in Z^+\)
3x2 + y2 + 2x - 2y = 1
\(\Leftrightarrow\)3x2 + y2 + 2x - 2y - 1 = 0
\(\Leftrightarrow\)2x( x+ 1 ) + ( x + 1 ) ( x - 1 ) - y( y - 1 ) = 0
\(\Leftrightarrow\)( x + 1 ) ( 3x + 1 ) - y( y - 1 ) = 0
\(\orbr{\begin{cases}\left(x+1\right)\left(3x+1\right)=0\\y\left(y-1\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=-1\\x=-\frac{1}{3}\end{cases}}\\\hept{\begin{cases}y=0\\y=1\end{cases}}\end{cases}}\)
Bạn tham khảo nhé!
Nguồn: 9 phương pháp giải phương trình nghiệm nguyên
1. cho các số thực dương x,y,z t/mãn: x2 + y2 + z2 = 1
Cmr: \(\frac{x}{y^2+z^2}\) + \(\frac{y}{x^2+z^2}+\frac{z}{x^2+y^2}\ge\) \(\frac{3\sqrt{3}}{2}\)
2. Cho x,y thỏa mãn \(\hept{\begin{cases}xy\ge0\\x^2+y^2=1\end{cases}}\)
Tìm GTNN,GTLN của \(S=x\sqrt{1+y}+y\sqrt{1+x}\)
3. Cho \(\hept{\begin{cases}xy\ne0\\xy\left(x+y\right)=x^2+y^2-xy\end{cases}}\)
Tìm GTLN của \(A=\frac{1}{x^3}+\frac{1}{y^3}\)
4. Cho tam giác ABC; đường thẳng đi qua trọng tâm G và tâm đường tròn nội tiếp I vuông góc với đường phân giác trong của góc C. Gọi a,b,c là độ dài 3 canh tương ứng với 3 đỉnh A,B,C.
Cmr: \(\frac{1}{a}+\frac{1}{b}\le\frac{2}{c}\)
ui má. đúng mấy bài tập thầy tui cho ôn. giờ đang loay hoay