Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: M = xy(x+y) + yz(y+z) + xz (x+z) + 2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(x + y)
= (x + y)(xy + zx + zy + z2)
= (x + y)[x(y + z) + z(y + z)]
M = (x + y)(y + z)(z + x) (đpcm)
\(VD1\)
Giả sử \(x\le y\Rightarrow\sqrt{x}\le\sqrt{y}\)
\(\Rightarrow2\sqrt{x}\le\sqrt{x}+\sqrt{y}=9\)
\(\Rightarrow\sqrt{x}\le4,5\)
\(\Rightarrow x\le4,5^2\)
\(\Rightarrow x\le20,25\)
\(\Rightarrow x\in\left\{0,1,4,9,16\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{0,1,2,3,4\right\}\)
TH1 : \(x=0\Rightarrow\sqrt{x}=0\Rightarrow\sqrt{y}=9\Rightarrow y=81\)
TH2 : \(x=1\Rightarrow\sqrt{x}=1\Rightarrow\sqrt{y}=8\Rightarrow y=64\)
Th3 : \(x=4\Rightarrow\sqrt{x}=2\Rightarrow\sqrt{y}=7\Rightarrow y=49\)
Th4 : \(x=9\Rightarrow\sqrt{x}=3\Rightarrow\sqrt{y}=6\Rightarrow y=36\)
Th5 : \(x=16\Rightarrow\sqrt{x}=4\Rightarrow\sqrt{y}=5\Rightarrow y=25\)
Vì x , y có vai trò như nhau nên các trường hợp còn lại chỉ là đổi chỗ giữa x và y . ( vd y = 0 thì x = 81 )
KL....
VD2: Ta có:
x+y+z=xyz ( 1 )
Chia 2 vế của ( 1 ) cho xyz\(\ne\)0 ta đc:
\(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)
Giả sử \(x\ge y\ge z\ge1\)thì ta có:
\(1=\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)
\(\Rightarrow1\le\frac{3}{z^2}\Rightarrow z^2\le3\Leftrightarrow z=1\)
Thay z=1 vào ( 1 ) ta đc:
x+y+1=xy
\(\Leftrightarrow\)xy -x - y = 1
\(\Leftrightarrow\)x ( y - 1 ) - ( y - 1 ) = 2
\(\Leftrightarrow\)( x - 1 ) ( y - 1 ) =2
Mà \(x-1\ge y-1\)nên \(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy nghiệm dương của phương trình là các hoán vị của 1, 2, 3
Dự đoán của chúa Pain x=y=z=1/3
áp dụng bất đẳng thức cô si ta có:
\(2xy\le2\left(\frac{x+y}{2}\right)^2\)
\(yz\le\left(\frac{y+z}{2}\right)^2\)
\(xz\le\left(\frac{z+x}{2}\right)^2\)
( vì X=Y=Z dự đoán của chúa pain) suy ra x+y=2x..ta được :
\(P\le2\left(\frac{x+y}{2}\right)^2+\left(\frac{y+z}{2}\right)^2+\left(\frac{z+x}{2}\right)^2\Leftrightarrow2x^2+y^2+z^2\)
\(P\le2x^2+y^2+z^2\Leftrightarrow P\le\frac{1}{3}\Leftrightarrow P\le\frac{2}{9}+\frac{1}{9}+\frac{1}{9}\Leftrightarrow P\le\frac{4}{9}\)
Vậy Max của P là 4/9 dâu = xảy ra khi x=y=z=1/3 đúng như dự đoán của chúa pain . chúa pain vô cmm nó địch :))
câu b giả sử x>_y>_z>_t>_1 (>_ lớn hơn hoặc =)
khi do 2xyzt=5(x+y+z+t)+10 _< 20x+10
=>xyzt _<10x+5 _<15x=>yzt_<15=>t^3_<15=>t_<2(vi t la nguyen duong)
voi t=1 ta co 2xyz=5(x+y+z)+15=>2yz _<30=>z_<3
roi tiep tuc thu cac truong hop can lai
voi t=2 lam tuong tu
phần b của bạn hình như đề bài sai nếu là +0 thì có ý nghĩa j phải là +10 chứ