K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2016

1)Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 

(xy-1) chia hết (x3+x) => (xy-1) chia hết x(x2+1) (1) 

Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d chia hết x => d chia hết xy => d chia hết 1). 

Nên từ (1) ta có: 

(xy-1) chia hết (x2+1) 

=> (xy-1) chia hết (x2+1+xy -1) => (xy-1) chia hết (x2+xy) => (xy-1) chia hết x(x+y) => (xy-1) chia hết (x+y) 

Điều đó có nghĩa là tồn tại z \(\in\) N* sao cho: 

x+y = z(xy-1) <=> x+y+z =xyz (2) 

Do vai trò bình đẳng nên ta giả sử: x \(\ge\) y \(\ge\) z. 

Từ (2) ta có: x+y+z \(\le\) 3x => 3x \(\ge\) xyz => 3 \(\ge\) yz \(\ge\) z2 => z=1 

=> 3 \(\ge\) y => y \(\in\) {1;2;3} 

Nếu y=1: x+2 =x (loại) 

Nếu y=2: (2) trở thành x+3 =2x => x=3 

Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x\(\ge\)y) 

Vậy khi x \(\ge\) y \(\ge\) z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)

2)\(\Leftrightarrow\sqrt{12x^2-12x+7}+\sqrt{8x^2-8x+3}=-4x^2+4x+2\)

\(\Leftrightarrow\sqrt{12x^2-12x+7}+\sqrt{8x^2-8x+3}+4x^2-4x-2=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

22 tháng 5 2016

cách làm đúng nhưng đoạn đầu của bài 1 bị ngược rồi ạ